Documentation

Mathlib.Algebra.BigOperators.Group.Finset.Interval

Sums/products over integer intervals #

This file contains some lemmas about sums and products over integer intervals Ixx.

theorem Finset.prod_Icc_of_even_eq_range {α : Type u_1} [CommGroup α] {f : α} (hf : Function.Even f) (N : ) :
mIcc (-N) N, f m = (∏ mrange (N + 1), f m) ^ 2 / f 0
theorem Finset.sum_Icc_of_even_eq_range {α : Type u_1} [AddCommGroup α] {f : α} (hf : Function.Even f) (N : ) :
mIcc (-N) N, f m = 2 mrange (N + 1), f m - f 0
theorem Finset.prod_Icc_eq_prod_Ico_mul {α : Type u_1} [CommMonoid α] (f : α) {l u : } (h : l u) :
mIcc l u, f m = (∏ mIco l u, f m) * f u
theorem Finset.sum_Icc_eq_sum_Ico_add {α : Type u_1} [AddCommMonoid α] (f : α) {l u : } (h : l u) :
mIcc l u, f m = mIco l u, f m + f u
theorem Finset.prod_Icc_succ_eq_mul_endpoints {R : Type u_1} [CommGroup R] (f : R) {N : } :
mIcc (-(N + 1)) (N + 1), f m = f (N + 1) * f (-(N + 1)) * mIcc (-N) N, f m
theorem Finset.sum_Icc_succ_eq_add_endpoints {R : Type u_1} [AddCommGroup R] (f : R) {N : } :
mIcc (-(N + 1)) (N + 1), f m = f (N + 1) + f (-(N + 1)) + mIcc (-N) N, f m