Documentation

Mathlib.Algebra.BigOperators.Group.Finset.Lemmas

Miscellaneous lemmas on big operators #

The lemmas in this file have been moved out of Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean to reduce its imports.

theorem MonoidHom.coe_finset_prod {ι : Type u_1} {M : Type u_3} {N : Type u_4} [MulOneClass M] [CommMonoid N] (f : ιM →* N) (s : Finset ι) :
(∏ xs, f x) = xs, (f x)
theorem AddMonoidHom.coe_finset_sum {ι : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddCommMonoid N] (f : ιM →+ N) (s : Finset ι) :
(∑ xs, f x) = xs, (f x)
@[simp]
theorem MonoidHom.finset_prod_apply {ι : Type u_1} {M : Type u_3} {N : Type u_4} [MulOneClass M] [CommMonoid N] (f : ιM →* N) (s : Finset ι) (b : M) :
(∏ xs, f x) b = xs, (f x) b

See also Finset.prod_apply, with the same conclusion but with the weaker hypothesis f : α → M → N

@[simp]
theorem AddMonoidHom.finset_sum_apply {ι : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddCommMonoid N] (f : ιM →+ N) (s : Finset ι) (b : M) :
(∑ xs, f x) b = xs, (f x) b

See also Finset.sum_apply, with the same conclusion but with the weaker hypothesis f : α → M → N

theorem Finset.mulSupport_prod {ι : Type u_1} {κ : Type u_2} {M : Type u_3} [CommMonoid M] (s : Finset ι) (f : ικM) :
(Function.mulSupport fun (x : κ) => is, f i x) is, Function.mulSupport (f i)
theorem Finset.support_sum {ι : Type u_1} {κ : Type u_2} {M : Type u_3} [AddCommMonoid M] (s : Finset ι) (f : ικM) :
(Function.support fun (x : κ) => is, f i x) is, Function.support (f i)
theorem Finset.isSquare_prod {ι : Type u_1} {M : Type u_3} [CommMonoid M] {s : Finset ι} (f : ιM) (h : cs, IsSquare (f c)) :
IsSquare (∏ is, f i)
theorem Finset.even_sum {ι : Type u_1} {M : Type u_3} [AddCommMonoid M] {s : Finset ι} (f : ιM) (h : cs, Even (f c)) :
Even (∑ is, f i)