Big operators on a finset in groups with zero #
This file contains the results concerning the interaction of finset big operators with groups with zero.
theorem
Finset.prod_eq_zero
{ι : Type u_1}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
{f : ι → M₀}
{s : Finset ι}
{i : ι}
(hi : i ∈ s)
(h : f i = 0)
:
theorem
Finset.prod_ite_zero
{ι : Type u_1}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
{p : ι → Prop}
[DecidablePred p]
{f : ι → M₀}
{s : Finset ι}
:
theorem
Finset.prod_boole
{ι : Type u_1}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
{p : ι → Prop}
[DecidablePred p]
{s : Finset ι}
:
theorem
Finset.support_prod_subset
{ι : Type u_1}
{κ : Type u_2}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
(s : Finset ι)
(f : ι → κ → M₀)
:
theorem
Finset.prod_eq_zero_iff
{ι : Type u_1}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
{f : ι → M₀}
{s : Finset ι}
[Nontrivial M₀]
[NoZeroDivisors M₀]
:
theorem
Finset.prod_ne_zero_iff
{ι : Type u_1}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
{f : ι → M₀}
{s : Finset ι}
[Nontrivial M₀]
[NoZeroDivisors M₀]
:
theorem
Finset.support_prod
{ι : Type u_1}
{κ : Type u_2}
{M₀ : Type u_4}
[CommMonoidWithZero M₀]
[Nontrivial M₀]
[NoZeroDivisors M₀]
(s : Finset ι)
(f : ι → κ → M₀)
:
theorem
Fintype.prod_ite_zero
{ι : Type u_1}
{M₀ : Type u_4}
[Fintype ι]
[CommMonoidWithZero M₀]
{p : ι → Prop}
[DecidablePred p]
{f : ι → M₀}
:
theorem
Fintype.prod_boole
{ι : Type u_1}
{M₀ : Type u_4}
[Fintype ι]
[CommMonoidWithZero M₀]
{p : ι → Prop}
[DecidablePred p]
: