Documentation

Mathlib.Algebra.BigOperators.NatAntidiagonal

Big operators for NatAntidiagonal #

This file contains theorems relevant to big operators over Finset.NatAntidiagonal.

theorem Finset.Nat.prod_antidiagonal_succ {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.antidiagonal (n + 1)) fun (p : × ) => f p) = f (0, n + 1) * Finset.prod (Finset.antidiagonal n) fun (p : × ) => f (p.1 + 1, p.2)
theorem Finset.Nat.sum_antidiagonal_succ {N : Type u_2} [AddCommMonoid N] {n : } {f : × N} :
(Finset.sum (Finset.antidiagonal (n + 1)) fun (p : × ) => f p) = f (0, n + 1) + Finset.sum (Finset.antidiagonal n) fun (p : × ) => f (p.1 + 1, p.2)
theorem Finset.Nat.sum_antidiagonal_swap {M : Type u_1} [AddCommMonoid M] {n : } {f : × M} :
(Finset.sum (Finset.antidiagonal n) fun (p : × ) => f (Prod.swap p)) = Finset.sum (Finset.antidiagonal n) fun (p : × ) => f p
theorem Finset.Nat.prod_antidiagonal_swap {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
theorem Finset.Nat.prod_antidiagonal_succ' {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.antidiagonal (n + 1)) fun (p : × ) => f p) = f (n + 1, 0) * Finset.prod (Finset.antidiagonal n) fun (p : × ) => f (p.1, p.2 + 1)
theorem Finset.Nat.sum_antidiagonal_succ' {N : Type u_2} [AddCommMonoid N] {n : } {f : × N} :
(Finset.sum (Finset.antidiagonal (n + 1)) fun (p : × ) => f p) = f (n + 1, 0) + Finset.sum (Finset.antidiagonal n) fun (p : × ) => f (p.1, p.2 + 1)
theorem Finset.Nat.sum_antidiagonal_subst {M : Type u_1} [AddCommMonoid M] {n : } {f : × M} :
(Finset.sum (Finset.antidiagonal n) fun (p : × ) => f p n) = Finset.sum (Finset.antidiagonal n) fun (p : × ) => f p (p.1 + p.2)
theorem Finset.Nat.prod_antidiagonal_subst {M : Type u_1} [CommMonoid M] {n : } {f : × M} :
(Finset.prod (Finset.antidiagonal n) fun (p : × ) => f p n) = Finset.prod (Finset.antidiagonal n) fun (p : × ) => f p (p.1 + p.2)
theorem Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk {M : Type u_3} [AddCommMonoid M] (f : × M) (n : ) :
(Finset.sum (Finset.antidiagonal n) fun (ij : × ) => f ij) = Finset.sum (Finset.range (Nat.succ n)) fun (k : ) => f (k, n - k)
theorem Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk {M : Type u_3} [CommMonoid M] (f : × M) (n : ) :
(Finset.prod (Finset.antidiagonal n) fun (ij : × ) => f ij) = Finset.prod (Finset.range (Nat.succ n)) fun (k : ) => f (k, n - k)
theorem Finset.Nat.sum_antidiagonal_eq_sum_range_succ {M : Type u_3} [AddCommMonoid M] (f : M) (n : ) :
(Finset.sum (Finset.antidiagonal n) fun (ij : × ) => f ij.1 ij.2) = Finset.sum (Finset.range (Nat.succ n)) fun (k : ) => f k (n - k)

This lemma matches more generally than Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk when using rw ← .

theorem Finset.Nat.prod_antidiagonal_eq_prod_range_succ {M : Type u_3} [CommMonoid M] (f : M) (n : ) :
(Finset.prod (Finset.antidiagonal n) fun (ij : × ) => f ij.1 ij.2) = Finset.prod (Finset.range (Nat.succ n)) fun (k : ) => f k (n - k)

This lemma matches more generally than Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk when using rw ← .