The category of groups with zero #
This file defines GroupWithZeroCat
, the category of groups with zero.
Construct a bundled GroupWithZeroCat
from a GroupWithZero
.
Instances For
theorem
GroupWithZeroCat.coe_comp
{X : GroupWithZeroCat}
{Y : GroupWithZeroCat}
{Z : GroupWithZeroCat}
{f : X ⟶ Y}
{g : Y ⟶ Z}
:
↑(CategoryTheory.CategoryStruct.comp f g) = ↑g ∘ ↑f
@[simp]
theorem
GroupWithZeroCat.forget_map
{X : GroupWithZeroCat}
{Y : GroupWithZeroCat}
(f : X ⟶ Y)
:
(CategoryTheory.forget GroupWithZeroCat).map f = ↑f
@[simp]
theorem
GroupWithZeroCat.Iso.mk_hom
{α : GroupWithZeroCat}
{β : GroupWithZeroCat}
(e : ↑α ≃* ↑β)
:
(GroupWithZeroCat.Iso.mk e).hom = ↑e
@[simp]
theorem
GroupWithZeroCat.Iso.mk_inv
{α : GroupWithZeroCat}
{β : GroupWithZeroCat}
(e : ↑α ≃* ↑β)
:
(GroupWithZeroCat.Iso.mk e).inv = ↑(MulEquiv.symm e)
Constructs an isomorphism of groups with zero from a group isomorphism between them.