The forget functor is corepresentable #
It is shown that the forget functor AddCommGrp.{u} ⥤ Type u
is corepresentable
by ULift ℤ
. Similar results are obtained for the variants CommGrp
, AddGrp
and Grp
.
The equivalence (Multiplicative ℤ →* α) ≃ α
for any group α
.
Equations
- MonoidHom.fromMultiplicativeIntEquiv α = { toFun := fun (φ : Multiplicative ℤ →* α) => φ (Multiplicative.ofAdd 1), invFun := fun (x : α) => (zpowersHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
MonoidHom.fromMultiplicativeIntEquiv_symm_apply
(α : Type u)
[Group α]
(x : α)
:
(MonoidHom.fromMultiplicativeIntEquiv α).symm x = (zpowersHom α) x
@[simp]
theorem
MonoidHom.fromMultiplicativeIntEquiv_apply
(α : Type u)
[Group α]
(φ : Multiplicative ℤ →* α)
:
(MonoidHom.fromMultiplicativeIntEquiv α) φ = φ (Multiplicative.ofAdd 1)
def
MonoidHom.fromULiftMultiplicativeIntEquiv
(α : Type u)
[Group α]
:
(ULift.{u, 0} (Multiplicative ℤ) →* α) ≃ α
The equivalence (ULift (Multiplicative ℤ) →* α) ≃ α
for any group α
.
Equations
- MonoidHom.fromULiftMultiplicativeIntEquiv α = (MonoidHom.precompEquiv MulEquiv.ulift.symm α).trans (MonoidHom.fromMultiplicativeIntEquiv α)
Instances For
@[simp]
theorem
MonoidHom.fromULiftMultiplicativeIntEquiv_apply
(α : Type u)
[Group α]
(a✝ : ULift.{u, 0} (Multiplicative ℤ) →* α)
:
(MonoidHom.fromULiftMultiplicativeIntEquiv α) a✝ = a✝ (MulEquiv.ulift.symm (Multiplicative.ofAdd 1))
@[simp]
theorem
MonoidHom.fromULiftMultiplicativeIntEquiv_symm_apply_apply
(α : Type u)
[Group α]
(a✝ : α)
(a✝¹ : ULift.{u, 0} (Multiplicative ℤ))
:
((MonoidHom.fromULiftMultiplicativeIntEquiv α).symm a✝) a✝¹ = a✝ ^ Multiplicative.toAdd (MulEquiv.ulift a✝¹)
The equivalence (ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromIntEquiv α = { toFun := fun (φ : ℤ →+ α) => φ 1, invFun := fun (x : α) => (zmultiplesHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
AddMonoidHom.fromIntEquiv_symm_apply
(α : Type u)
[AddGroup α]
(x : α)
:
(AddMonoidHom.fromIntEquiv α).symm x = (zmultiplesHom α) x
@[simp]
theorem
AddMonoidHom.fromIntEquiv_apply
(α : Type u)
[AddGroup α]
(φ : ℤ →+ α)
:
(AddMonoidHom.fromIntEquiv α) φ = φ 1
The equivalence (ULift ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromULiftIntEquiv α = (AddMonoidHom.precompEquiv AddEquiv.ulift.symm α).trans (AddMonoidHom.fromIntEquiv α)
Instances For
@[simp]
theorem
AddMonoidHom.fromULiftIntEquiv_apply
(α : Type u)
[AddGroup α]
(a✝ : ULift.{u, 0} ℤ →+ α)
:
(AddMonoidHom.fromULiftIntEquiv α) a✝ = a✝ (AddEquiv.ulift.symm 1)
@[simp]
theorem
AddMonoidHom.fromULiftIntEquiv_symm_apply_apply
(α : Type u)
[AddGroup α]
(a✝ : α)
(a✝¹ : ULift.{u, 0} ℤ)
:
((AddMonoidHom.fromULiftIntEquiv α).symm a✝) a✝¹ = AddEquiv.ulift a✝¹ • a✝
def
Grp.coyonedaObjIsoForget :
CategoryTheory.coyoneda.obj (Opposite.op (Grp.of (ULift.{u, 0} (Multiplicative ℤ)))) ≅ CategoryTheory.forget Grp
The forget functor Grp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
def
CommGrp.coyonedaObjIsoForget :
CategoryTheory.coyoneda.obj (Opposite.op (CommGrp.of (ULift.{u, 0} (Multiplicative ℤ)))) ≅ CategoryTheory.forget CommGrp
The forget functor CommGrp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
def
AddGrp.coyonedaObjIsoForget :
CategoryTheory.coyoneda.obj (Opposite.op (AddGrp.of (ULift.{u, 0} ℤ))) ≅ CategoryTheory.forget AddGrp
The forget functor AddGrp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
def
AddCommGrp.coyonedaObjIsoForget :
CategoryTheory.coyoneda.obj (Opposite.op (AddCommGrp.of (ULift.{u, 0} ℤ))) ≅ CategoryTheory.forget AddCommGrp
The forget functor AddCommGrp.{u} ⥤ Type u
is corepresentable.