The category of commutative additive groups has images. #
Note that we don't need to register any of the constructions here as instances, because we get them
from the fact that AddCommGrpCat
is an abelian category.
the image of a morphism in AddCommGrpCat
is just the bundling of AddMonoidHom.range f
Equations
Instances For
the corestriction map to the image
Equations
Instances For
noncomputable def
AddCommGrpCat.image.lift
{G H : AddCommGrpCat}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
the universal property for the image factorisation
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AddCommGrpCat.image.lift_fac
{G H : AddCommGrpCat}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
the factorisation of any morphism in AddCommGrpCat
through a mono.
Equations
- AddCommGrpCat.monoFactorisation f = { I := AddCommGrpCat.image f, m := AddCommGrpCat.image.ι f, m_mono := ⋯, e := AddCommGrpCat.factorThruImage f, fac := ⋯ }
Instances For
the factorisation of any morphism in AddCommGrpCat
through a mono has
the universal property of the image.
Equations
- AddCommGrpCat.isImage f = { lift := AddCommGrpCat.image.lift, lift_fac := ⋯ }
Instances For
The categorical image of a morphism in AddCommGrpCat
agrees with the usual group-theoretical range.