The category of additive commutative groups is preadditive. #
Equations
- AddCommGrp.instAddHom = { add := fun (f g : M ⟶ N) => AddCommGrp.ofHom (AddCommGrp.Hom.hom f + AddCommGrp.Hom.hom g) }
@[simp]
theorem
AddCommGrp.hom_add_apply
{P Q : AddCommGrp}
(f g : P ⟶ Q)
(x : ↑P)
:
(CategoryTheory.ConcreteCategory.hom (f + g)) x = (CategoryTheory.ConcreteCategory.hom f) x + (CategoryTheory.ConcreteCategory.hom g) x
Equations
- AddCommGrp.instZeroHom_1 = { zero := AddCommGrp.ofHom 0 }
Equations
- AddCommGrp.instSMulNatHom = { smul := fun (n : ℕ) (f : M ⟶ N) => AddCommGrp.ofHom (n • AddCommGrp.Hom.hom f) }
@[simp]
Equations
- AddCommGrp.instNegHom = { neg := fun (f : M ⟶ N) => AddCommGrp.ofHom (-AddCommGrp.Hom.hom f) }
Equations
- AddCommGrp.instSubHom = { sub := fun (f g : M ⟶ N) => AddCommGrp.ofHom (AddCommGrp.Hom.hom f - AddCommGrp.Hom.hom g) }
@[simp]
Equations
- AddCommGrp.instSMulIntHom = { smul := fun (n : ℤ) (f : M ⟶ N) => AddCommGrp.ofHom (n • AddCommGrp.Hom.hom f) }
@[simp]
Equations
- P.instAddCommGroupHom Q = Function.Injective.addCommGroup AddCommGrp.Hom.hom ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- AddCommGrp.instPreadditive = { homGroup := inferInstance, add_comp := AddCommGrp.instPreadditive.proof_1, comp_add := AddCommGrp.instPreadditive.proof_2 }
AddCommGrp.Hom.hom
bundled as an additive equivalence.
Equations
- AddCommGrp.homAddEquiv = { toEquiv := CategoryTheory.ConcreteCategory.homEquiv, map_add' := ⋯ }
Instances For
@[simp]
@[simp]