The category of (commutative) (additive) groups has a zero object. #
AddCommGroup also has zero morphisms. For definitional reasons, we infer this from preadditivity
rather than from the existence of a zero object.
theorem
GrpCat.subsingleton_of_isZero
{G : GrpCat}
(h : CategoryTheory.Limits.IsZero G)
:
Subsingleton ↑G
theorem
AddGrpCat.subsingleton_of_isZero
{G : AddGrpCat}
(h : CategoryTheory.Limits.IsZero G)
:
Subsingleton ↑G
theorem
CommGrpCat.subsingleton_of_isZero
{G : CommGrpCat}
(h : CategoryTheory.Limits.IsZero G)
:
Subsingleton ↑G
theorem
AddCommGrpCat.subsingleton_of_isZero
{G : AddCommGrpCat}
(h : CategoryTheory.Limits.IsZero G)
:
Subsingleton ↑G