The category of R-modules has images. #
Note that we don't need to register any of the constructions here as instances, because we get them
from the fact that ModuleCat R
is an abelian category.
The image of a morphism in ModuleCat R
is just the bundling of LinearMap.range f
Equations
- ModuleCat.image f = ModuleCat.of R ↥(LinearMap.range (ModuleCat.Hom.hom f))
Instances For
The corestriction map to the image
Equations
Instances For
noncomputable def
ModuleCat.image.lift
{R : Type u}
[Ring R]
{G H : ModuleCat R}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
The universal property for the image factorisation
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ModuleCat.image.lift_fac
{R : Type u}
[Ring R]
{G H : ModuleCat R}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
The factorisation of any morphism in ModuleCat R
through a mono has the universal property of
the image.
Equations
- ModuleCat.isImage f = { lift := ModuleCat.image.lift, lift_fac := ⋯ }
Instances For
@[simp]
theorem
ModuleCat.imageIsoRange_inv_image_ι_apply
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
(x : CategoryTheory.ToType (of R ↥(LinearMap.range (Hom.hom f))))
:
@[simp]
theorem
ModuleCat.imageIsoRange_hom_subtype_apply
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
(x : CategoryTheory.ToType (CategoryTheory.Limits.image f))
: