Documentation

Mathlib.Algebra.Category.ModuleCat.Images

The category of R-modules has images. #

Note that we don't need to register any of the constructions here as instances, because we get them from the fact that ModuleCat R is an abelian category.

def ModuleCat.image {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

The image of a morphism in ModuleCat R is just the bundling of LinearMap.range f

Equations
Instances For
    def ModuleCat.image.ι {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

    The inclusion of image f into the target

    Equations
    Instances For
      instance ModuleCat.instMonoι {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :
      def ModuleCat.factorThruImage {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

      The corestriction map to the image

      Equations
      Instances For
        noncomputable def ModuleCat.image.lift {R : Type u} [Ring R] {G H : ModuleCat R} {f : G H} (F' : CategoryTheory.Limits.MonoFactorisation f) :
        image f F'.I

        The universal property for the image factorisation

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def ModuleCat.isImage {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

          The factorisation of any morphism in ModuleCat R through a mono has the universal property of the image.

          Equations
          Instances For
            noncomputable def ModuleCat.imageIsoRange {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

            The categorical image of a morphism in ModuleCat R agrees with the linear algebraic range.

            Equations
            Instances For
              theorem ModuleCat.imageIsoRange_inv_image_ι_apply {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) (x : (CategoryTheory.forget (ModuleCat R)).obj (of R (LinearMap.range f.hom))) :