Documentation

Mathlib.Algebra.Category.ModuleCat.Limits

The category of R-modules has all limits #

Further, these limits are preserved by the forgetful functor --- that is, the underlying types are just the limits in the category of types.

The flat sections of a functor into ModuleCat R form a submodule of all sections.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      limit.π (F ⋙ forget (ModuleCat.{w} R)) j as an R-linear map.

      Equations
      Instances For

        Construction of a limit cone in ModuleCat R. (Internal use only; use the limits API.)

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Witness that the limit cone in ModuleCat R is a limit cone. (Internal use only; use the limits API.)

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            If (F ⋙ forget (ModuleCat R)).sections is u-small, F has a limit.

            If J is u-small, the category of R-modules has limits of shape J.

            The category of R-modules has all limits.

            The forgetful functor from R-modules to abelian groups preserves all limits.

            The forgetful functor from R-modules to types preserves all limits.

            def ModuleCat.directLimitDiagram {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] :

            The diagram (in the sense of CategoryTheory) of an unbundled directLimit of modules.

            Equations
            Instances For
              theorem ModuleCat.directLimitDiagram_obj_isAddCommGroup {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] (i : ι) :
              Eq ((directLimitDiagram G f).obj i).isAddCommGroup (inst✝ i)
              theorem ModuleCat.directLimitDiagram_obj_isModule {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] (i : ι) :
              Eq ((directLimitDiagram G f).obj i).isModule (inst✝ i)
              theorem ModuleCat.directLimitDiagram_map {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] {X✝ Y✝ : ι} (hij : Quiver.Hom X✝ Y✝) :
              Eq ((directLimitDiagram G f).map hij) (ofHom (f X✝ Y✝ ))
              theorem ModuleCat.directLimitDiagram_obj_carrier {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] (i : ι) :
              def ModuleCat.directLimitCocone {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] :

              The Cocone on directLimitDiagram corresponding to the unbundled directLimit of modules.

              In directLimitIsColimit we show that it is a colimit cocone.

              Equations
              Instances For
                theorem ModuleCat.directLimitCocone_pt_carrier {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] :
                theorem ModuleCat.directLimitCocone_pt_isModule {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] :
                theorem ModuleCat.directLimitCocone_ι_app {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] (x : ι) :
                theorem ModuleCat.directLimitCocone_pt_isAddCommGroup {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] :
                def ModuleCat.directLimitIsColimit {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] :

                The unbundled directLimit of modules is a colimit in the sense of CategoryTheory.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem ModuleCat.directLimitIsColimit_desc {R : Type u} [Ring R] {ι : Type v} [Preorder ι] (G : ιType v) [(i : ι) → AddCommGroup (G i)] [(i : ι) → Module R (G i)] (f : (i j : ι) → LE.le i jLinearMap (RingHom.id R) (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : LE.le i j) => DFunLike.coe (f i j h)] [DecidableEq ι] (s : CategoryTheory.Limits.Cocone (directLimitDiagram G f)) :
                  Eq ((directLimitIsColimit G f).desc s) (ofHom (Module.DirectLimit.lift R ι G f (fun (i : ι) => Hom.hom (s.ι.app i)) ))