Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf.ChangeOfRings

Change of presheaf of rings #

In this file, we define the restriction of scalars functor restrictScalars α : PresheafOfModules.{v} R' ⥤ PresheafOfModules.{v} R attached to a morphism of presheaves of rings α : R ⟶ R'.

The restriction of scalars of presheaves of modules, on objects.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem PresheafOfModules.restrictScalarsObj_map {C : Type u'} [CategoryTheory.Category.{v', u'} C] {R R' : CategoryTheory.Functor Cᵒᵖ RingCat} (M' : PresheafOfModules R') (α : R R') {X Y : Cᵒᵖ} (f : X Y) :
    (M'.restrictScalarsObj α).map f = ModuleCat.ofHom { toFun := (CategoryTheory.ConcreteCategory.hom (M'.map f)), map_add' := , map_smul' := }

    The restriction of scalars functor PresheafOfModules R' ⥤ PresheafOfModules R induced by a morphism of presheaves of rings R ⟶ R'.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The isomorphism restrictScalars α ⋙ toPresheaf R ≅ toPresheaf R' for any morphism of presheaves of rings α : R ⟶ R'.

      Equations
      Instances For