Documentation

Mathlib.Algebra.Category.ModuleCat.Products

The concrete products in the category of modules are products in the categorical sense. #

def ModuleCat.productCone {R : Type u} [Ring R] {ι : Type v} (Z : ιModuleCatMax R) :

The product cone induced by the concrete product.

Equations
Instances For

    The concrete product cone is limiting.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def ModuleCat.piIsoPi {R : Type u} [Ring R] {ι : Type v} (Z : ιModuleCatMax R) [CategoryTheory.Limits.HasProduct Z] :
      ∏ᶜ Z ModuleCat.of R ((i : ι) → (Z i))

      The categorical product of a family of objects in ModuleCat agrees with the usual module-theoretical product.

      Equations
      Instances For

        The coproduct cone induced by the concrete product.

        Equations
        Instances For

          The concrete coproduct cone is limiting.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def ModuleCat.coprodIsoDirectSum {R : Type u} [Ring R] {ι : Type v} (Z : ιModuleCatMax R) [DecidableEq ι] [CategoryTheory.Limits.HasCoproduct Z] :
            Z ModuleCat.of R (DirectSum ι fun (i : ι) => (Z i))

            The categorical coproduct of a family of objects in ModuleCat agrees with direct sum.

            Equations
            Instances For
              theorem ModuleCat.lof_coprodIsoDirectSum_inv_apply {R : Type u} [Ring R] {ι : Type v} (Z : ιModuleCatMax R) [DecidableEq ι] [CategoryTheory.Limits.HasCoproduct Z] (i : ι) (x : (CategoryTheory.forget (ModuleCat R)).obj (ModuleCat.of R (Z i))) :
              (ModuleCat.coprodIsoDirectSum Z).inv ((ModuleCat.ofHom (DirectSum.lof R ι (fun (i : ι) => (Z i)) i)) x) = (CategoryTheory.Limits.Sigma.ι Z i) x