Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.Free

Free sheaves of modules #

In this file, we construct the functor SheafOfModules.freeFunctor : Type u ⥤ SheafOfModules.{u} R which sends a type I to the coproduct of copies indexed by I of unit R.

TODO #

The free sheaf of modules on a certain type I.

Equations
Instances For

    The data of a morphism free I ⟶ M from a free sheaf of modules is equivalent to the data of a family I → M.sections of sections of M.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem SheafOfModules.freeHomEquiv_symm_comp {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasWeakSheafify J AddCommGrp] [J.WEqualsLocallyBijective AddCommGrp] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] {M : SheafOfModules R} {N : SheafOfModules R} {I : Type u} (s : IM.sections) (p : M N) :
      CategoryTheory.CategoryStruct.comp (M.freeHomEquiv.symm s) p = N.freeHomEquiv.symm fun (i : I) => SheafOfModules.sectionsMap p (s i)
      @[reducible, inline]

      The tautological section of free I : SheafOfModules R corresponding to i : I.

      Equations
      Instances For

        The morphism of presheaves of R-modules free I ⟶ free J induced by a map f : I → J.

        Equations
        Instances For
          @[simp]
          theorem SheafOfModules.freeHomEquiv_freeMap {C : Type u'} [CategoryTheory.Category.{v', u'} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J✝ RingCat} [CategoryTheory.HasWeakSheafify J✝ AddCommGrp] [J✝.WEqualsLocallyBijective AddCommGrp] [J✝.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)] {I : Type u} {J : Type u} (f : IJ) :
          (SheafOfModules.free J).freeHomEquiv (SheafOfModules.freeMap f) = SheafOfModules.freeSection f

          The functor Type u ⥤ SheafOfModules.{u} R which sends a type I to free I which is a coproduct indexed by I of copies of R (thought as a presheaf of modules over itself). -

          Equations
          • SheafOfModules.freeFunctor = { obj := SheafOfModules.free, map := fun {X Y : Type u} (f : X Y) => SheafOfModules.freeMap f, map_id := , map_comp := }
          Instances For