Free sheaves of modules #
In this file, we construct the functor
SheafOfModules.freeFunctor : Type u ⥤ SheafOfModules.{u} R which sends
a type I to the coproduct of copies indexed by I of unit R.
TODO #
- In case the category
Chas a terminal objectX, promotefreeHomEquivinto an adjunction betweenfreeFunctorand the evaluation functor atX. (Alternatively, assuming specific universe parameters, we could show thatfreeFunctoris a left adjoint toSheafOfModules.sectionsFunctor.)
The free sheaf of modules on a certain type I.
Equations
- SheafOfModules.free I = ∐ fun (x : I) => SheafOfModules.unit R
Instances For
The inclusions unit R ⟶ free I.
Equations
- SheafOfModules.ιFree i = CategoryTheory.Limits.Sigma.ι (fun (x : I) => SheafOfModules.unit R) i
Instances For
The tautological cofan with point free I : SheafOfModules R.
Equations
Instances For
free I is the colimit of copies of unit R indexed by I.
Equations
Instances For
The data of a morphism free I ⟶ M from a free sheaf of modules is
equivalent to the data of a family I → M.sections of sections of M.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The tautological section of free I : SheafOfModules R corresponding to i : I.
Equations
Instances For
The morphism of presheaves of R-modules free I ⟶ free J induced by
a map f : I → J.
Equations
- SheafOfModules.freeMap f = (SheafOfModules.free J).freeHomEquiv.symm fun (i : I) => SheafOfModules.freeSection (f i)
Instances For
The functor Type u ⥤ SheafOfModules.{u} R which sends a type I to
free I which is a coproduct indexed by I of copies of R (thought of as a
presheaf of modules over itself).
Equations
- SheafOfModules.freeFunctor = { obj := SheafOfModules.free, map := fun {X Y : Type ?u.77} (f : X ⟶ Y) => SheafOfModules.freeMap f, map_id := ⋯, map_comp := ⋯ }