Limits in categories of sheaves of modules #
In this file, it is shown that under suitable assumptions,
limits exist in the category SheafOfModules R
.
TODO #
- do the same for colimits (which requires constructing the associated sheaf of modules functor)
theorem
PresheafOfModules.isSheaf_of_isLimit
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{R : CategoryTheory.Functor Cᵒᵖ RingCat}
{F : CategoryTheory.Functor D (PresheafOfModules R)}
[∀ (X : Cᵒᵖ),
Small.{v, max u₂ v}
↑((F.comp (PresheafOfModules.evaluation R X)).comp (CategoryTheory.forget (ModuleCat ↑(R.obj X)))).sections]
{c : CategoryTheory.Limits.Cone F}
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrp]
(hc : CategoryTheory.Limits.IsLimit c)
(hF : ∀ (j : D), CategoryTheory.Presheaf.IsSheaf J (F.obj j).presheaf)
:
CategoryTheory.Presheaf.IsSheaf J c.pt.presheaf
instance
SheafOfModules.instSmallElemForallObjCompModuleCatαRingOppositeRingCatValPresheafOfModulesForgetEvaluationForgetSections
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[∀ (X : Cᵒᵖ),
Small.{v, max u₂ v}
↑((F.comp (SheafOfModules.evaluation R X)).comp (CategoryTheory.forget (ModuleCat ↑(R.val.obj X)))).sections]
(X : Cᵒᵖ)
:
Small.{v, max u₂ v}
↑(((F.comp (SheafOfModules.forget R)).comp (PresheafOfModules.evaluation R.val X)).comp
(CategoryTheory.forget (ModuleCat ↑(R.val.obj X)))).sections
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.createsLimit
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[∀ (X : Cᵒᵖ),
Small.{v, max u₂ v}
↑((F.comp (SheafOfModules.evaluation R X)).comp (CategoryTheory.forget (ModuleCat ↑(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrp]
:
Equations
- One or more equations did not get rendered due to their size.
instance
SheafOfModules.hasLimit
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[∀ (X : Cᵒᵖ),
Small.{v, max u₂ v}
↑((F.comp (SheafOfModules.evaluation R X)).comp (CategoryTheory.forget (ModuleCat ↑(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrp]
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.evaluationPreservesLimit
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[∀ (X : Cᵒᵖ),
Small.{v, max u₂ v}
↑((F.comp (SheafOfModules.evaluation R X)).comp (CategoryTheory.forget (ModuleCat ↑(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrp]
(X : Cᵒᵖ)
:
Equations
- ⋯ = ⋯
instance
SheafOfModules.hasLimitsOfShape
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, u₂} D]
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.evaluationPreservesLimitsOfShape
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, u₂} D]
(X : Cᵒᵖ)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.forgetPreservesLimitsOfShape
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, u₂} D]
:
Equations
- ⋯ = ⋯
instance
SheafOfModules.Finite.hasFiniteLimits
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.Finite.evaluationPreservesFiniteLimits
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
(X : Cᵒᵖ)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.Finite.forgetPreservesFiniteLimits
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯
instance
SheafOfModules.hasLimitsOfSize
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.evaluationPreservesLimitsOfSize
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
(X : Cᵒᵖ)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.forgetPreservesLimitsOfSize
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.instPreservesFiniteLimitsFunctorOppositeAddCommGrpCompSheafToSheafSheafToPresheaf
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯
noncomputable instance
SheafOfModules.instPreservesFiniteLimitsSheafAddCommGrpToSheaf
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
Equations
- ⋯ = ⋯