The forget functor is corepresentable #
The forgetful functor AddCommMonCat.{u} ⥤ Type u
is corepresentable
by ULift ℕ
. Similar results are obtained for the variants CommMonCat
, AddMonCat
and MonCat
.
The equivalence (β →* γ) ≃ (α →* γ)
obtained by precomposition with
a multiplicative equivalence e : α ≃* β
.
Equations
- MonoidHom.precompEquiv e γ = { toFun := fun (f : β →* γ) => f.comp ↑e, invFun := fun (g : α →* γ) => g.comp ↑e.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (Multiplicative ℕ →* α) ≃ α
for any monoid α
.
Equations
- MonoidHom.fromMultiplicativeNatEquiv α = { toFun := fun (φ : Multiplicative ℕ →* α) => φ (Multiplicative.ofAdd 1), invFun := fun (x : α) => (powersHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ULift (Multiplicative ℕ) →* α) ≃ α
for any monoid α
.
Equations
- MonoidHom.fromULiftMultiplicativeNatEquiv α = (MonoidHom.precompEquiv MulEquiv.ulift.symm α).trans (MonoidHom.fromMultiplicativeNatEquiv α)
Instances For
The equivalence (β →+ γ) ≃ (α →+ γ)
obtained by precomposition with
an additive equivalence e : α ≃+ β
.
Equations
- AddMonoidHom.precompEquiv e γ = { toFun := fun (f : β →+ γ) => f.comp ↑e, invFun := fun (g : α →+ γ) => g.comp ↑e.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromNatEquiv α = { toFun := fun (φ : ℕ →+ α) => φ 1, invFun := fun (x : α) => (multiplesHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ULift ℕ →+ α) ≃ α
for any additive monoid α
.
Equations
- AddMonoidHom.fromULiftNatEquiv α = (AddMonoidHom.precompEquiv AddEquiv.ulift.symm α).trans (AddMonoidHom.fromNatEquiv α)
Instances For
The forgetful functor MonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor CommMonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor AddMonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor AddCommMonCat.{u} ⥤ Type u
is corepresentable.