Basic Translation Lemmas Between Functions Defined for Continued Fractions #
Summary #
Some simple translation lemmas between the different definitions of functions defined in
Algebra.ContinuedFractions.Basic
.
Translations Between General Access Functions #
Here we give some basic translations that hold by definition between the various methods that allow us to access the numerators and denominators of a continued fraction.
Translations Between Computational Functions #
Here we give some basic translations that hold by definition for the computational methods of a continued fraction.
theorem
GenContFract.nth_cont_eq_succ_nth_contAux
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
theorem
GenContFract.conv_eq_num_div_den
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
theorem
GenContFract.conv_eq_conts_a_div_conts_b
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
@[simp]
theorem
GenContFract.zeroth_contAux_eq_one_zero
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
GenContFract.first_den_eq
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
{gp : Pair K}
(zeroth_s_eq : g.s.get? 0 = some gp)
:
@[simp]
theorem
GenContFract.zeroth_conv'Aux_eq_zero
{K : Type u_1}
[DivisionRing K]
{s : Stream'.Seq (Pair K)}
:
@[simp]
theorem
GenContFract.convs'Aux_succ_none
{K : Type u_1}
[DivisionRing K]
{s : Stream'.Seq (Pair K)}
(h : s.head = none)
(n : ℕ)
: