Basic Translation Lemmas Between Functions Defined for Continued Fractions #
Summary #
Some simple translation lemmas between the different definitions of functions defined in
Algebra.ContinuedFractions.Basic
.
Translations Between General Access Functions #
Here we give some basic translations that hold by definition between the various methods that allow us to access the numerators and denominators of a continued fraction.
theorem
GenContFract.terminatedAt_iff_s_terminatedAt
{α : Type u_1}
{g : GenContFract α}
{n : ℕ}
:
g.TerminatedAt n ↔ g.s.TerminatedAt n
theorem
GenContFract.partNum_eq_s_a
{α : Type u_1}
{g : GenContFract α}
{n : ℕ}
{gp : Pair α}
(s_nth_eq : g.s.get? n = some gp)
:
theorem
GenContFract.partDen_eq_s_b
{α : Type u_1}
{g : GenContFract α}
{n : ℕ}
{gp : Pair α}
(s_nth_eq : g.s.get? n = some gp)
:
Translations Between Computational Functions #
Here we give some basic translations that hold by definition for the computational methods of a continued fraction.
theorem
GenContFract.nth_cont_eq_succ_nth_contAux
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
theorem
GenContFract.num_eq_conts_a
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
g.nums n = (g.conts n).a
theorem
GenContFract.den_eq_conts_b
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
g.dens n = (g.conts n).b
theorem
GenContFract.conv_eq_num_div_den
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
theorem
GenContFract.conv_eq_conts_a_div_conts_b
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
:
theorem
GenContFract.exists_conts_a_of_num
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
{A : K}
(nth_num_eq : g.nums n = A)
:
theorem
GenContFract.exists_conts_b_of_den
{K : Type u_1}
{g : GenContFract K}
{n : ℕ}
[DivisionRing K]
{B : K}
(nth_denom_eq : g.dens n = B)
:
@[simp]
theorem
GenContFract.zeroth_contAux_eq_one_zero
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.contsAux 0 = { a := 1, b := 0 }
@[simp]
theorem
GenContFract.first_contAux_eq_h_one
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.contsAux 1 = { a := g.h, b := 1 }
@[simp]
theorem
GenContFract.zeroth_cont_eq_h_one
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.conts 0 = { a := g.h, b := 1 }
@[simp]
theorem
GenContFract.zeroth_num_eq_h
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.nums 0 = g.h
@[simp]
theorem
GenContFract.zeroth_den_eq_one
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.dens 0 = 1
@[simp]
theorem
GenContFract.zeroth_conv_eq_h
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.convs 0 = g.h
theorem
GenContFract.second_contAux_eq
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
{gp : Pair K}
(zeroth_s_eq : g.s.get? 0 = some gp)
:
theorem
GenContFract.first_cont_eq
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
{gp : Pair K}
(zeroth_s_eq : g.s.get? 0 = some gp)
:
theorem
GenContFract.first_num_eq
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
{gp : Pair K}
(zeroth_s_eq : g.s.get? 0 = some gp)
:
theorem
GenContFract.first_den_eq
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
{gp : Pair K}
(zeroth_s_eq : g.s.get? 0 = some gp)
:
g.dens 1 = gp.b
@[simp]
theorem
GenContFract.zeroth_conv'Aux_eq_zero
{K : Type u_1}
[DivisionRing K]
{s : Stream'.Seq (Pair K)}
:
@[simp]
theorem
GenContFract.zeroth_conv'_eq_h
{K : Type u_1}
{g : GenContFract K}
[DivisionRing K]
:
g.convs' 0 = g.h
theorem
GenContFract.convs'Aux_succ_none
{K : Type u_1}
[DivisionRing K]
{s : Stream'.Seq (Pair K)}
(h : s.head = none)
(n : ℕ)
: