Documentation

Mathlib.Algebra.Field.ModEq

Congruence modulo multiples of an element in a (semi)field #

In this file we prove a few theorems about the congruence relation _ ≡ _ [PMOD _] in a division semiring or a semifield.

@[simp]
theorem AddCommGroup.div_modEq_div {K : Type u_1} [DivisionSemiring K] {a b c p : K} (hc : c 0) :
a / c b / c [PMOD p] a b [PMOD p * c]
@[simp]
theorem AddCommGroup.mul_modEq_mul_right {K : Type u_1} [DivisionSemiring K] {a b c p : K} (hc : c 0) :
a * c b * c [PMOD p] a b [PMOD p / c]
@[simp]
theorem AddCommGroup.mul_modEq_mul_left {K : Type u_1} [Semifield K] {a b c p : K} (hc : c 0) :
c * a c * b [PMOD p] a b [PMOD p / c]