Documentation

Mathlib.Algebra.Group.Action.TypeTags

Additive and Multiplicative for group actions #

Tags #

group action

instance Additive.vadd {α : Type u_2} {β : Type u_3} [SMul α β] :
VAdd (Additive α) β
Equations
instance Multiplicative.smul {α : Type u_2} {β : Type u_3} [VAdd α β] :
Equations
@[simp]
theorem toMul_smul {α : Type u_2} {β : Type u_3} [SMul α β] (a : Additive α) (b : β) :
@[simp]
theorem ofMul_vadd {α : Type u_2} {β : Type u_3} [SMul α β] (a : α) (b : β) :
@[simp]
theorem toAdd_vadd {α : Type u_2} {β : Type u_3} [VAdd α β] (a : Multiplicative α) (b : β) :
@[simp]
theorem ofAdd_smul {α : Type u_2} {β : Type u_3} [VAdd α β] (a : α) (b : β) :
instance Additive.addAction {α : Type u_2} {β : Type u_3} [Monoid α] [MulAction α β] :
Equations
instance Multiplicative.mulAction {α : Type u_2} {β : Type u_3} [AddMonoid α] [AddAction α β] :
Equations
instance Additive.vaddCommClass {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SMul α γ] [SMul β γ] [SMulCommClass α β γ] :
instance Multiplicative.smulCommClass {α : Type u_2} {β : Type u_3} {γ : Type u_4} [VAdd α γ] [VAdd β γ] [VAddCommClass α β γ] :