Documentation

Mathlib.Algebra.Group.Commute.Units

Lemmas about commuting pairs of elements involving units. #

theorem Commute.units_inv_right {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute a uCommute a u⁻¹
theorem AddCommute.addUnits_neg_right {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a uAddCommute a (-u)
@[simp]
theorem Commute.units_inv_right_iff {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute a u⁻¹ Commute a u
@[simp]
theorem AddCommute.addUnits_neg_right_iff {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a (-u) AddCommute a u
theorem Commute.units_inv_left {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute (↑u) aCommute (↑u⁻¹) a
theorem AddCommute.addUnits_neg_left {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (↑u) aAddCommute (↑(-u)) a
@[simp]
theorem Commute.units_inv_left_iff {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} :
Commute (↑u⁻¹) a Commute (↑u) a
@[simp]
theorem AddCommute.addUnits_neg_left_iff {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (↑(-u)) a AddCommute (↑u) a
theorem Commute.units_val {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
theorem AddCommute.addUnits_val {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
theorem Commute.units_of_val {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
theorem AddCommute.addUnits_of_val {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
@[simp]
theorem Commute.units_val_iff {M : Type u_1} [Monoid M] {u₁ u₂ : Mˣ} :
Commute u₁ u₂ Commute u₁ u₂
@[simp]
theorem AddCommute.addUnits_val_iff {M : Type u_1} [AddMonoid M] {u₁ u₂ : AddUnits M} :
AddCommute u₁ u₂ AddCommute u₁ u₂
def Units.leftOfMul {M : Type u_1} [Monoid M] (u : Mˣ) (a b : M) (hu : a * b = u) (hc : Commute a b) :

If the product of two commuting elements is a unit, then the left multiplier is a unit.

Equations
  • u.leftOfMul a b hu hc = { val := a, inv := b * u⁻¹, val_inv := , inv_val := }
Instances For
    def AddUnits.leftOfAdd {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a b : M) (hu : a + b = u) (hc : AddCommute a b) :

    If the sum of two commuting elements is an additive unit, then the left summand is an additive unit.

    Equations
    • u.leftOfAdd a b hu hc = { val := a, neg := b + (-u), val_neg := , neg_val := }
    Instances For
      def Units.rightOfMul {M : Type u_1} [Monoid M] (u : Mˣ) (a b : M) (hu : a * b = u) (hc : Commute a b) :

      If the product of two commuting elements is a unit, then the right multiplier is a unit.

      Equations
      • u.rightOfMul a b hu hc = u.leftOfMul b a
      Instances For
        def AddUnits.rightOfAdd {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a b : M) (hu : a + b = u) (hc : AddCommute a b) :

        If the sum of two commuting elements is an additive unit, then the right summand is an additive unit.

        Equations
        • u.rightOfAdd a b hu hc = u.leftOfAdd b a
        Instances For
          theorem Commute.isUnit_mul_iff {M : Type u_1} [Monoid M] {a b : M} (h : Commute a b) :
          theorem AddCommute.isAddUnit_add_iff {M : Type u_1} [AddMonoid M] {a b : M} (h : AddCommute a b) :
          @[simp]
          theorem isUnit_mul_self_iff {M : Type u_1} [Monoid M] {a : M} :
          IsUnit (a * a) IsUnit a
          @[simp]
          theorem isAddUnit_add_self_iff {M : Type u_1} [AddMonoid M] {a : M} :
          @[simp]
          theorem Commute.units_zpow_right {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} (h : Commute a u) (m : ) :
          Commute a (u ^ m)
          @[simp]
          theorem AddCommute.addUnits_zsmul_right {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} (h : AddCommute a u) (m : ) :
          AddCommute a (m u)
          @[simp]
          theorem Commute.units_zpow_left {M : Type u_1} [Monoid M] {a : M} {u : Mˣ} (h : Commute (↑u) a) (m : ) :
          Commute (↑(u ^ m)) a
          @[simp]
          theorem AddCommute.addUnits_zsmul_left {M : Type u_1} [AddMonoid M] {a : M} {u : AddUnits M} (h : AddCommute (↑u) a) (m : ) :
          AddCommute (↑(m u)) a
          def Units.ofPow {M : Type u_1} [Monoid M] (u : Mˣ) (x : M) {n : } (hn : n 0) (hu : x ^ n = u) :

          If a natural power of x is a unit, then x is a unit.

          Equations
          • u.ofPow x hn hu = u.leftOfMul x (x ^ (n - 1))
          Instances For
            def AddUnits.ofNSMul {M : Type u_1} [AddMonoid M] (u : AddUnits M) (x : M) {n : } (hn : n 0) (hu : n x = u) :

            If a natural multiple of x is an additive unit, then x is an additive unit.

            Equations
            • u.ofNSMul x hn hu = u.leftOfAdd x ((n - 1) x)
            Instances For
              @[simp]
              theorem isUnit_pow_iff {M : Type u_1} [Monoid M] {n : } {a : M} (hn : n 0) :
              IsUnit (a ^ n) IsUnit a
              @[simp]
              theorem isAddUnit_nsmul_iff {M : Type u_1} [AddMonoid M] {n : } {a : M} (hn : n 0) :
              theorem isUnit_pow_succ_iff {M : Type u_1} [Monoid M] {n : } {a : M} :
              IsUnit (a ^ (n + 1)) IsUnit a
              theorem isAddUnit_nsmul_succ_iff {M : Type u_1} [AddMonoid M] {n : } {a : M} :
              def Units.ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :

              If a ^ n = 1, n ≠ 0, then a is a unit.

              Equations
              Instances For
                def AddUnits.ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :

                If n • x = 0, n ≠ 0, then x is an additive unit.

                Equations
                Instances For
                  @[simp]
                  theorem AddUnits.val_neg_ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :
                  (-AddUnits.ofNSMulEqZero a n ha hn) = (n - 1) a
                  @[simp]
                  theorem Units.val_ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :
                  (Units.ofPowEqOne a n ha hn) = a
                  @[simp]
                  theorem Units.val_inv_ofPowEqOne {M : Type u_1} [Monoid M] (a : M) (n : ) (ha : a ^ n = 1) (hn : n 0) :
                  (Units.ofPowEqOne a n ha hn)⁻¹ = a ^ (n - 1)
                  @[simp]
                  theorem AddUnits.val_ofNSMulEqZero {M : Type u_1} [AddMonoid M] (a : M) (n : ) (ha : n a = 0) (hn : n 0) :
                  (AddUnits.ofNSMulEqZero a n ha hn) = a
                  @[simp]
                  theorem Units.pow_ofPowEqOne {M : Type u_1} [Monoid M] {n : } {a : M} (ha : a ^ n = 1) (hn : n 0) :
                  Units.ofPowEqOne a n ha hn ^ n = 1
                  @[simp]
                  theorem AddUnits.nsmul_ofNSMulEqZero {M : Type u_1} [AddMonoid M] {n : } {a : M} (ha : n a = 0) (hn : n 0) :
                  theorem isUnit_ofPowEqOne {M : Type u_1} [Monoid M] {n : } {a : M} (ha : a ^ n = 1) (hn : n 0) :
                  theorem isAddUnit_ofNSMulEqZero {M : Type u_1} [AddMonoid M] {n : } {a : M} (ha : n a = 0) (hn : n 0) :
                  theorem Commute.div_eq_div_iff_of_isUnit {M : Type u_1} [DivisionMonoid M] {a b c d : M} (hbd : Commute b d) (hb : IsUnit b) (hd : IsUnit d) :
                  a / b = c / d a * d = c * b
                  theorem AddCommute.sub_eq_sub_iff_of_isAddUnit {M : Type u_1} [SubtractionMonoid M] {a b c d : M} (hbd : AddCommute b d) (hb : IsAddUnit b) (hd : IsAddUnit d) :
                  a - b = c - d a + d = c + b