Cardinalities of pointwise operations on sets #
theorem
Cardinal.mk_add_le
{M : Type u_2}
[Add M]
{s : Set M}
{t : Set M}
:
Cardinal.mk ↑(s + t) ≤ Cardinal.mk ↑s * Cardinal.mk ↑t
theorem
Cardinal.mk_mul_le
{M : Type u_2}
[Mul M]
{s : Set M}
{t : Set M}
:
Cardinal.mk ↑(s * t) ≤ Cardinal.mk ↑s * Cardinal.mk ↑t
@[deprecated]
Alias of Set.natCard_mul_le
.
@[simp]
theorem
Cardinal.mk_neg
{G : Type u_1}
[InvolutiveNeg G]
(s : Set G)
:
Cardinal.mk ↑(-s) = Cardinal.mk ↑s
@[simp]
theorem
Cardinal.mk_inv
{G : Type u_1}
[InvolutiveInv G]
(s : Set G)
:
Cardinal.mk ↑s⁻¹ = Cardinal.mk ↑s
@[simp]
@[simp]
@[deprecated]
Alias of Set.natCard_inv
.
@[deprecated]
theorem
Cardinal.mk_sub_le
{M : Type u_2}
[SubNegMonoid M]
{s : Set M}
{t : Set M}
:
Cardinal.mk ↑(s - t) ≤ Cardinal.mk ↑s * Cardinal.mk ↑t
theorem
Cardinal.mk_div_le
{M : Type u_2}
[DivInvMonoid M]
{s : Set M}
{t : Set M}
:
Cardinal.mk ↑(s / t) ≤ Cardinal.mk ↑s * Cardinal.mk ↑t
@[simp]
theorem
Cardinal.mk_vadd_set
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
(a : G)
(s : Set α)
:
Cardinal.mk ↑(a +ᵥ s) = Cardinal.mk ↑s
@[simp]
theorem
Cardinal.mk_smul_set
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
(a : G)
(s : Set α)
:
Cardinal.mk ↑(a • s) = Cardinal.mk ↑s
@[deprecated]
theorem
Set.card_smul_set
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
(a : G)
(s : Set α)
:
Cardinal.mk ↑(a • s) = Cardinal.mk ↑s
Alias of Cardinal.mk_smul_set
.
@[deprecated]
theorem
Set.card_vadd_set
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
(a : G)
(s : Set α)
:
Cardinal.mk ↑(a +ᵥ s) = Cardinal.mk ↑s