Documentation

Mathlib.Algebra.Group.Support

Support of a function #

In this file we prove basic properties of Function.support f = {x | f x ≠ 0}, and similarly for Function.mulSupport f = {x | f x ≠ 1}.

theorem Function.mulSupport_mul {α : Type u_1} {M : Type u_2} [MulOneClass M] (f g : αM) :
(mulSupport fun (x : α) => f x * g x) mulSupport f mulSupport g
theorem Function.support_add {α : Type u_1} {M : Type u_2} [AddZeroClass M] (f g : αM) :
(support fun (x : α) => f x + g x) support f support g
theorem Function.mulSupport_pow {α : Type u_1} {M : Type u_2} [Monoid M] (f : αM) (n : ) :
(mulSupport fun (x : α) => f x ^ n) mulSupport f
theorem Function.support_nsmul {α : Type u_1} {M : Type u_2} [AddMonoid M] (f : αM) (n : ) :
(support fun (x : α) => n f x) support f
@[simp]
theorem Function.mulSupport_fun_inv {α : Type u_1} {G : Type u_3} [DivisionMonoid G] (f : αG) :
(mulSupport fun (x : α) => (f x)⁻¹) = mulSupport f
@[simp]
theorem Function.support_fun_neg {α : Type u_1} {G : Type u_3} [SubtractionMonoid G] (f : αG) :
(support fun (x : α) => -f x) = support f
@[simp]
theorem Function.mulSupport_inv {α : Type u_1} {G : Type u_3} [DivisionMonoid G] (f : αG) :
@[simp]
theorem Function.support_neg {α : Type u_1} {G : Type u_3} [SubtractionMonoid G] (f : αG) :
@[deprecated Function.support_neg (since := "2025-07-31")]
theorem Function.support_neg' {α : Type u_1} {G : Type u_3} [SubtractionMonoid G] (f : αG) :

Alias of Function.support_neg.

@[deprecated Function.mulSupport_inv (since := "2025-07-31")]
theorem Function.mulSupport_inv' {α : Type u_1} {G : Type u_3} [DivisionMonoid G] (f : αG) :

Alias of Function.mulSupport_inv.

theorem Function.mulSupport_mul_inv {α : Type u_1} {G : Type u_3} [DivisionMonoid G] (f g : αG) :
(mulSupport fun (x : α) => f x * (g x)⁻¹) mulSupport f mulSupport g
theorem Function.support_add_neg {α : Type u_1} {G : Type u_3} [SubtractionMonoid G] (f g : αG) :
(support fun (x : α) => f x + -g x) support f support g
theorem Function.mulSupport_div {α : Type u_1} {G : Type u_3} [DivisionMonoid G] (f g : αG) :
(mulSupport fun (x : α) => f x / g x) mulSupport f mulSupport g
theorem Function.support_sub {α : Type u_1} {G : Type u_3} [SubtractionMonoid G] (f g : αG) :
(support fun (x : α) => f x - g x) support f support g