Transport algebra morphisms between additive and multiplicative types. #
Reinterpret α →+ β
as Multiplicative α →* Multiplicative β
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddMonoidHom.toMultiplicative_symm_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[AddZeroClass β]
(f : Multiplicative α →* Multiplicative β)
(a : α)
:
@[simp]
theorem
AddMonoidHom.toMultiplicative_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[AddZeroClass β]
(f : α →+ β)
(a : Multiplicative α)
:
@[simp]
theorem
AddMonoidHom.coe_toMultiplicative
{α : Type u}
{β : Type v}
[AddZeroClass α]
[AddZeroClass β]
(f : α →+ β)
:
Reinterpret α →* β
as Additive α →+ Additive β
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MonoidHom.toAdditive_symm_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[MulOneClass β]
(f : Additive α →+ Additive β)
(a : α)
:
@[simp]
theorem
MonoidHom.toAdditive_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[MulOneClass β]
(f : α →* β)
(a : Additive α)
:
@[simp]
theorem
MonoidHom.coe_toMultiplicative
{α : Type u}
{β : Type v}
[MulOneClass α]
[MulOneClass β]
(f : α →* β)
:
Reinterpret Additive α →+ β
as α →* Multiplicative β
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddMonoidHom.toMultiplicative'_symm_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(f : α →* Multiplicative β)
(a : Additive α)
:
@[simp]
theorem
AddMonoidHom.toMultiplicative'_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(f : Additive α →+ β)
(a : α)
:
@[simp]
theorem
AddMonoidHom.coe_toMultiplicative'
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(f : Additive α →+ β)
:
Reinterpret α →* Multiplicative β
as Additive α →+ β
.
Instances For
@[simp]
theorem
MonoidHom.toAdditive'_symm_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(a✝ : Additive α →+ β)
(a : α)
:
@[simp]
theorem
MonoidHom.toAdditive'_apply_apply
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(a✝ : α →* Multiplicative β)
(a : Additive α)
:
@[simp]
theorem
MonoidHom.coe_toAdditive'
{α : Type u}
{β : Type v}
[MulOneClass α]
[AddZeroClass β]
(f : α →* Multiplicative β)
:
Reinterpret α →+ Additive β
as Multiplicative α →* β
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddMonoidHom.toMultiplicative''_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(f : α →+ Additive β)
(a : Multiplicative α)
:
@[simp]
theorem
AddMonoidHom.toMultiplicative''_symm_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(f : Multiplicative α →* β)
(a : α)
:
@[simp]
theorem
AddMonoidHom.coe_toMultiplicative''
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(f : α →+ Additive β)
:
Reinterpret Multiplicative α →* β
as α →+ Additive β
.
Instances For
@[simp]
theorem
MonoidHom.toAdditive''_symm_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(a✝ : α →+ Additive β)
(a : Multiplicative α)
:
@[simp]
theorem
MonoidHom.toAdditive''_apply_apply
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(a✝ : Multiplicative α →* β)
(a : α)
:
@[simp]
theorem
MonoidHom.coe_toAdditive''
{α : Type u}
{β : Type v}
[AddZeroClass α]
[MulOneClass β]
(f : Multiplicative α →* β)
: