Units in multiplicative and additive opposites #
@[simp]
theorem
Units.coe_unop_opEquiv
{M : Type u_2}
[Monoid M]
(u : Mᵐᵒᵖˣ)
:
↑(MulOpposite.unop (Units.opEquiv u)) = MulOpposite.unop ↑u
@[simp]
theorem
AddUnits.coe_unop_opEquiv
{M : Type u_2}
[AddMonoid M]
(u : AddUnits Mᵃᵒᵖ)
:
↑(AddOpposite.unop (AddUnits.opEquiv u)) = AddOpposite.unop ↑u
@[simp]
theorem
Units.coe_opEquiv_symm
{M : Type u_2}
[Monoid M]
(u : Mˣᵐᵒᵖ)
:
↑(Units.opEquiv.symm u) = MulOpposite.op ↑(MulOpposite.unop u)
@[simp]
theorem
AddUnits.coe_opEquiv_symm
{M : Type u_2}
[AddMonoid M]
(u : (AddUnits M)ᵃᵒᵖ)
:
↑(AddUnits.opEquiv.symm u) = AddOpposite.op ↑(AddOpposite.unop u)
@[simp]
theorem
isAddUnit_op
{M : Type u_2}
[AddMonoid M]
{m : M}
:
IsAddUnit (AddOpposite.op m) ↔ IsAddUnit m
@[simp]
@[simp]
theorem
isAddUnit_unop
{M : Type u_2}
[AddMonoid M]
{m : Mᵃᵒᵖ}
:
IsAddUnit (AddOpposite.unop m) ↔ IsAddUnit m