Documentation
Mathlib
.
Algebra
.
GroupWithZero
.
Idempotent
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Idempotent
Mathlib.Algebra.GroupWithZero.Defs
Imported by
IsIdempotentElem
.
zero
IsIdempotentElem
.
instZeroSubtype
IsIdempotentElem
.
coe_zero
IsIdempotentElem
.
iff_eq_zero_or_one
Idempotent elements of a group with zero
#
source
theorem
IsIdempotentElem
.
zero
{M₀ :
Type
u_4}
[
MulZeroClass
M₀
]
:
IsIdempotentElem
0
source
instance
IsIdempotentElem
.
instZeroSubtype
{M₀ :
Type
u_4}
[
MulZeroClass
M₀
]
:
Zero
{
p
:
M₀
//
IsIdempotentElem
p
}
Equations
IsIdempotentElem.instZeroSubtype
=
{
zero
:=
⟨
0
,
⋯
⟩
}
source
@[simp]
theorem
IsIdempotentElem
.
coe_zero
{M₀ :
Type
u_4}
[
MulZeroClass
M₀
]
:
↑
0
=
0
source
@[simp]
theorem
IsIdempotentElem
.
iff_eq_zero_or_one
{G₀ :
Type
u_8}
[
CancelMonoidWithZero
G₀
]
{p :
G₀
}
:
IsIdempotentElem
p
↔
p
=
0
∨
p
=
1