Documentation

Mathlib.Algebra.GroupWithZero.Idempotent

Idempotent elements of a group with zero #

@[simp]
theorem IsIdempotentElem.coe_zero {M₀ : Type u_1} [MulZeroClass M₀] :
0 = 0
@[simp]
theorem IsIdempotentElem.iff_eq_zero_or_one {G₀ : Type u_2} [MonoidWithZero G₀] [IsLeftCancelMulZero G₀] {p : G₀} :