Lemmas about semiconjugate elements in a GroupWithZero
. #
@[simp]
@[simp]
@[simp]
theorem
SemiconjBy.inv_symm_left_iff₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y : G₀}
:
SemiconjBy a⁻¹ x y ↔ SemiconjBy a y x
theorem
SemiconjBy.inv_symm_left₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y : G₀}
(h : SemiconjBy a x y)
:
SemiconjBy a⁻¹ y x
theorem
SemiconjBy.inv_right₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y : G₀}
(h : SemiconjBy a x y)
:
SemiconjBy a x⁻¹ y⁻¹
@[simp]
theorem
SemiconjBy.inv_right_iff₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y : G₀}
:
SemiconjBy a x⁻¹ y⁻¹ ↔ SemiconjBy a x y
theorem
SemiconjBy.div_right
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y x' y' : G₀}
(h : SemiconjBy a x y)
(h' : SemiconjBy a x' y')
:
SemiconjBy a (x / x') (y / y')
theorem
SemiconjBy.zpow_right₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a x y : G₀}
(h : SemiconjBy a x y)
(m : ℤ)
:
SemiconjBy a (x ^ m) (y ^ m)
theorem
Commute.zpow_right₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a b : G₀}
(h : Commute a b)
(m : ℤ)
:
theorem
Commute.zpow_left₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a b : G₀}
(h : Commute a b)
(m : ℤ)
:
theorem
Commute.zpow_zpow₀
{G₀ : Type u_1}
[GroupWithZero G₀]
{a b : G₀}
(h : Commute a b)
(m n : ℤ)
: