Lie algebras of matrices #
An important class of Lie algebras are those arising from the associative algebra structure on square matrices over a commutative ring. This file provides some very basic definitions whose primary value stems from their utility when constructing the classical Lie algebras using matrices.
Main definitions #
Tags #
lie algebra, matrix
def
lieEquivMatrix'
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
:
Module.End R (n → R) ≃ₗ⁅R⁆ Matrix n n R
The natural equivalence between linear endomorphisms of finite free modules and square matrices is compatible with the Lie algebra structures.
Equations
- lieEquivMatrix' = { toLinearMap := ↑LinearMap.toMatrix', map_lie' := ⋯, invFun := LinearMap.toMatrix'.invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
lieEquivMatrix'_apply
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
(f : Module.End R (n → R))
:
lieEquivMatrix' f = LinearMap.toMatrix' f
@[simp]
theorem
lieEquivMatrix'_symm_apply
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
(A : Matrix n n R)
:
lieEquivMatrix'.symm A = Matrix.toLin' A
def
Matrix.lieConj
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
(P : Matrix n n R)
(h : Invertible P)
:
An invertible matrix induces a Lie algebra equivalence from the space of matrices to itself.
Equations
- P.lieConj h = (lieEquivMatrix'.symm.trans (P.toLinearEquiv' h).lieConj).trans lieEquivMatrix'
Instances For
@[simp]
theorem
Matrix.lieConj_apply
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
(P A : Matrix n n R)
(h : Invertible P)
:
@[simp]
theorem
Matrix.lieConj_symm_apply
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
(P A : Matrix n n R)
(h : Invertible P)
:
def
Matrix.reindexLieEquiv
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
{m : Type w₁}
[DecidableEq m]
[Fintype m]
(e : n ≃ m)
:
For square matrices, the natural map that reindexes a matrix's rows and columns with equivalent
types, Matrix.reindex
, is an equivalence of Lie algebras.
Equations
- Matrix.reindexLieEquiv e = { toFun := ⇑(Matrix.reindex e e), map_add' := ⋯, map_smul' := ⋯, map_lie' := ⋯, invFun := (Matrix.reindexLinearEquiv R R e e).invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Matrix.reindexLieEquiv_apply
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
{m : Type w₁}
[DecidableEq m]
[Fintype m]
(e : n ≃ m)
(M : Matrix n n R)
:
(reindexLieEquiv e) M = (reindex e e) M
@[simp]
theorem
Matrix.reindexLieEquiv_symm
{R : Type u}
[CommRing R]
{n : Type w}
[DecidableEq n]
[Fintype n]
{m : Type w₁}
[DecidableEq m]
[Fintype m]
(e : n ≃ m)
:
(reindexLieEquiv e).symm = reindexLieEquiv e.symm