Matrices and linear equivalences #
This file gives the map Matrix.toLinearEquiv
from matrices with invertible determinant,
to linear equivs.
Main definitions #
Matrix.toLinearEquiv
: a matrix with an invertible determinant forms a linear equiv
Main results #
Matrix.exists_mulVec_eq_zero_iff
:M
maps somev ≠ 0
to zero iffdet M = 0
Tags #
matrix, linear_equiv, determinant, inverse
An invertible matrix yields a linear equivalence from the free module to itself.
See Matrix.toLinearEquiv
for the same map on arbitrary modules.
Equations
- P.toLinearEquiv' x = (LinearMap.GeneralLinearGroup.generalLinearEquiv R (n → R)) (Matrix.GeneralLinearGroup.toLinear (unitOfInvertible P))
Instances For
Given hA : IsUnit A.det
and b : Basis R b
, A.toLinearEquiv b hA
is
the LinearEquiv
arising from toLin b b A
.
See Matrix.toLinearEquiv'
for this result on n → R
.
Equations
- Matrix.toLinearEquiv b A hA = { toFun := ⇑((Matrix.toLin b b) A), map_add' := ⋯, map_smul' := ⋯, invFun := ⇑((Matrix.toLin b b) A⁻¹), left_inv := ⋯, right_inv := ⋯ }
Instances For
This holds for all integral domains (see Matrix.exists_mulVec_eq_zero_iff
),
not just fields, but it's easier to prove it for the field of fractions first.
Alias of the reverse direction of Matrix.nondegenerate_iff_det_ne_zero
.
Alias of the forward direction of Matrix.nondegenerate_iff_det_ne_zero
.
A matrix whose nondiagonal entries are negative with the sum of the entries of each column positive has nonzero determinant.
A matrix whose nondiagonal entries are negative with the sum of the entries of each row positive has nonzero determinant.