Matrices associated with non-degenerate bilinear forms #
Main definitions #
Matrix.Nondegenerate A
: the proposition that when interpreted as a bilinear form, the matrixA
is nondegenerate.
theorem
Matrix.nondegenerate_of_det_ne_zero
{m : Type u_1}
{A : Type u_3}
[Fintype m]
[CommRing A]
[IsDomain A]
[DecidableEq m]
{M : Matrix m m A}
(hM : M.det ≠ 0)
:
M.Nondegenerate
If M
has a nonzero determinant, then M
as a bilinear form on n → A
is nondegenerate.
See also BilinForm.nondegenerateOfDetNeZero'
and BilinForm.nondegenerateOfDetNeZero
.
theorem
Matrix.eq_zero_of_vecMul_eq_zero
{m : Type u_1}
{A : Type u_3}
[Fintype m]
[CommRing A]
[IsDomain A]
[DecidableEq m]
{M : Matrix m m A}
(hM : M.det ≠ 0)
{v : m → A}
(hv : Matrix.vecMul v M = 0)
:
v = 0