Documentation

Mathlib.RingTheory.Localization.Integer

Integer elements of a localization #

Main definitions #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

def IsLocalization.IsInteger (R : Type u_1) [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] (a : S) :

Given a : S, S a localization of R, IsInteger R a iff a is in the image of the localization map from R to S.

Equations
Instances For
    theorem IsLocalization.isInteger_add {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {a b : S} (ha : IsInteger R a) (hb : IsInteger R b) :
    IsInteger R (a + b)
    theorem IsLocalization.isInteger_mul {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {a b : S} (ha : IsInteger R a) (hb : IsInteger R b) :
    IsInteger R (a * b)
    theorem IsLocalization.isInteger_smul {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {a : R} {b : S} (hb : IsInteger R b) :
    IsInteger R (a b)
    theorem IsLocalization.exists_integer_multiple' {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : S) :
    ∃ (b : M), IsInteger R (a * (algebraMap R S) b)

    Each element a : S has an M-multiple which is an integer.

    This version multiplies a on the right, matching the argument order in LocalizationMap.surj.

    theorem IsLocalization.exists_integer_multiple {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : S) :
    ∃ (b : M), IsInteger R (b a)

    Each element a : S has an M-multiple which is an integer.

    This version multiplies a on the left, matching the argument order in the SMul instance.

    theorem IsLocalization.exist_integer_multiples {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {ι : Type u_4} (s : Finset ι) (f : ιS) :
    ∃ (b : M), is, IsInteger R (b f i)

    We can clear the denominators of a Finset-indexed family of fractions.

    theorem IsLocalization.exist_integer_multiples_of_finite {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {ι : Type u_4} [Finite ι] (f : ιS) :
    ∃ (b : M), ∀ (i : ι), IsInteger R (b f i)

    We can clear the denominators of a finite indexed family of fractions.

    theorem IsLocalization.exist_integer_multiples_of_finset {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (s : Finset S) :
    ∃ (b : M), as, IsInteger R (b a)

    We can clear the denominators of a finite set of fractions.

    noncomputable def IsLocalization.commonDenom {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {ι : Type u_4} (s : Finset ι) (f : ιS) :
    M

    A choice of a common multiple of the denominators of a Finset-indexed family of fractions.

    Equations
    Instances For
      noncomputable def IsLocalization.integerMultiple {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {ι : Type u_4} (s : Finset ι) (f : ιS) (i : { x : ι // x s }) :
      R

      The numerator of a fraction after clearing the denominators of a Finset-indexed family of fractions.

      Equations
      Instances For
        @[simp]
        theorem IsLocalization.map_integerMultiple {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {ι : Type u_4} (s : Finset ι) (f : ιS) (i : { x : ι // x s }) :
        (algebraMap R S) (integerMultiple M s f i) = commonDenom M s f f i
        noncomputable def IsLocalization.commonDenomOfFinset {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (s : Finset S) :
        M

        A choice of a common multiple of the denominators of a finite set of fractions.

        Equations
        Instances For
          noncomputable def IsLocalization.finsetIntegerMultiple {R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] [DecidableEq R] (s : Finset S) :

          The finset of numerators after clearing the denominators of a finite set of fractions.

          Equations
          Instances For