Relations holding pairwise #
This file defines pairwise relations.
Main declarations #
Pairwise
:Pairwise r
states thatr i j
for alli ≠ j
.Set.Pairwise
:s.Pairwise r
states thatr i j
for alli ≠ j
withi, j ∈ s
.
theorem
Function.injective_iff_pairwise_ne
{α : Type u_1}
{ι : Type u_3}
{f : ι → α}
:
Function.Injective f ↔ Pairwise ((fun (x1 x2 : α) => x1 ≠ x2) on f)
theorem
Function.Injective.pairwise_ne
{α : Type u_1}
{ι : Type u_3}
{f : ι → α}
:
Function.Injective f → Pairwise ((fun (x1 x2 : α) => x1 ≠ x2) on f)
Alias of the forward direction of Function.injective_iff_pairwise_ne
.
theorem
Pairwise.comp_of_injective
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
(hr : Pairwise r)
{f : β → α}
(hf : Function.Injective f)
:
theorem
Pairwise.of_comp_of_surjective
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{f : β → α}
(hr : Pairwise (r on f))
(hf : Function.Surjective f)
:
Pairwise r
theorem
Function.Bijective.pairwise_comp_iff
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{f : β → α}
(hf : Function.Bijective f)
:
theorem
Set.pairwise_of_forall
{α : Type u_1}
(s : Set α)
(r : α → α → Prop)
(h : ∀ (a b : α), r a b)
:
s.Pairwise r
theorem
Set.Pairwise.imp_on
{α : Type u_1}
{r p : α → α → Prop}
{s : Set α}
(h : s.Pairwise r)
(hrp : s.Pairwise fun ⦃a b : α⦄ => r a b → p a b)
:
s.Pairwise p
theorem
Set.Pairwise.imp
{α : Type u_1}
{r p : α → α → Prop}
{s : Set α}
(h : s.Pairwise r)
(hpq : ∀ ⦃a b : α⦄, r a b → p a b)
:
s.Pairwise p
theorem
Set.Pairwise.on_injective
{α : Type u_1}
{ι : Type u_3}
{r : α → α → Prop}
{f : ι → α}
{s : Set α}
(hs : s.Pairwise r)
(hf : Function.Injective f)
(hfs : ∀ (x : ι), f x ∈ s)
: