Documentation

Mathlib.Algebra.Lie.TensorProduct

Tensor products of Lie modules #

Tensor products of Lie modules carry natural Lie module structures.

Tags #

lie module, tensor product, universal property

noncomputable def TensorProduct.LieModule.hasBracketAux {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] (x : L) :

It is useful to define the bracket via this auxiliary function so that we have a type-theoretic expression of the fact that L acts by linear endomorphisms. It simplifies the proofs in lieRingModule below.

Equations
Instances For
    noncomputable instance TensorProduct.LieModule.lieRingModule {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] :

    The tensor product of two Lie modules is a Lie ring module.

    Equations
    noncomputable instance TensorProduct.LieModule.lieModule {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] :

    The tensor product of two Lie modules is a Lie module.

    Equations
    • =
    @[simp]
    theorem TensorProduct.LieModule.lie_tmul_right {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] (x : L) (m : M) (n : N) :
    noncomputable def TensorProduct.LieModule.lift (R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type w₁) (P : Type w₂) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] :

    The universal property for tensor product of modules of a Lie algebra: the R-linear tensor-hom adjunction is equivariant with respect to the L action.

    Equations
    Instances For
      @[simp]
      theorem TensorProduct.LieModule.lift_apply (R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type w₁) (P : Type w₂) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] (f : M →ₗ[R] N →ₗ[R] P) (m : M) (n : N) :
      ((TensorProduct.LieModule.lift R L M N P) f) (m ⊗ₜ[R] n) = (f m) n
      noncomputable def TensorProduct.LieModule.liftLie (R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type w₁) (P : Type w₂) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] :

      A weaker form of the universal property for tensor product of modules of a Lie algebra.

      Note that maps f of type M →ₗ⁅R,L⁆ N →ₗ[R] P are exactly those R-bilinear maps satisfying ⁅x, f m n⁆ = f ⁅x, m⁆ n + f m ⁅x, n⁆ for all x, m, n (see e.g, LieModuleHom.map_lie₂).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem TensorProduct.LieModule.coe_liftLie_eq_lift_coe (R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type w₁) (P : Type w₂) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] (f : M →ₗ⁅R,L N →ₗ[R] P) :
        ((TensorProduct.LieModule.liftLie R L M N P) f) = ((TensorProduct.LieModule.lift R L M N P) f)
        theorem TensorProduct.LieModule.liftLie_apply (R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type w₁) (P : Type w₂) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] (f : M →ₗ⁅R,L N →ₗ[R] P) (m : M) (n : N) :
        ((TensorProduct.LieModule.liftLie R L M N P) f) (m ⊗ₜ[R] n) = (f m) n
        noncomputable def TensorProduct.LieModule.map {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} {Q : Type w₃} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] [AddCommGroup Q] [Module R Q] [LieRingModule L Q] [LieModule R L Q] (f : M →ₗ⁅R,L P) (g : N →ₗ⁅R,L Q) :

        A pair of Lie module morphisms f : M → P and g : N → Q, induce a Lie module morphism: M ⊗ N → P ⊗ Q.

        Equations
        Instances For
          @[simp]
          theorem TensorProduct.LieModule.coe_linearMap_map {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} {Q : Type w₃} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] [AddCommGroup Q] [Module R Q] [LieRingModule L Q] [LieModule R L Q] (f : M →ₗ⁅R,L P) (g : N →ₗ⁅R,L Q) :
          @[simp]
          theorem TensorProduct.LieModule.map_tmul {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} {Q : Type w₃} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] [AddCommGroup Q] [Module R Q] [LieRingModule L Q] [LieModule R L Q] (f : M →ₗ⁅R,L P) (g : N →ₗ⁅R,L Q) (m : M) (n : N) :
          noncomputable def TensorProduct.LieModule.mapIncl {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] (M' : LieSubmodule R L M) (N' : LieSubmodule R L N) :
          TensorProduct R M' N' →ₗ⁅R,L TensorProduct R M N

          Given Lie submodules M' ⊆ M and N' ⊆ N, this is the natural map: M' ⊗ N' → M ⊗ N.

          Equations
          Instances For
            @[simp]
            theorem TensorProduct.LieModule.mapIncl_def {R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type w₁} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] (M' : LieSubmodule R L M) (N' : LieSubmodule R L N) :
            noncomputable def LieModule.toModuleHom (R : Type u) [CommRing R] (L : Type v) (M : Type w) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :

            The action of the Lie algebra on one of its modules, regarded as a morphism of Lie modules.

            Equations
            Instances For
              @[simp]
              theorem LieModule.toModuleHom_apply (R : Type u) [CommRing R] (L : Type v) (M : Type w) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (m : M) :
              theorem LieSubmodule.lieIdeal_oper_eq_tensor_map_range {R : Type u} [CommRing R] {L : Type v} {M : Type w} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (I : LieIdeal R L) (N : LieSubmodule R L M) :

              A useful alternative characterisation of Lie ideal operations on Lie submodules.

              Given a Lie ideal I ⊆ L and a Lie submodule N ⊆ M, by tensoring the inclusion maps and then applying the action of L on M, we obtain morphism of Lie modules f : I ⊗ N → L ⊗ M → M.

              This lemma states that ⁅I, N⁆ = range f.