Documentation
Mathlib
.
Algebra
.
Module
.
BigOperators
Search
return to top
source
Imports
Init
Mathlib.Algebra.Module.Defs
Mathlib.Data.Fintype.BigOperators
Mathlib.Algebra.BigOperators.GroupWithZero.Action
Imported by
List
.
sum_smul
Multiset
.
sum_smul
Multiset
.
sum_smul_sum
Finset
.
sum_smul
Finset
.
sum_smul_sum
Fintype
.
sum_smul_sum
Finset
.
cast_card
Fintype
.
sum_piFinset_apply
Finite sums over modules over a ring
#
source
theorem
List
.
sum_smul
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
{l :
List
R
}
{x :
M
}
:
l
.
sum
•
x
=
(
map
(fun (
r
:
R
) =>
r
•
x
)
l
)
.
sum
source
theorem
Multiset
.
sum_smul
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
{l :
Multiset
R
}
{x :
M
}
:
l
.
sum
•
x
=
(
map
(fun (
r
:
R
) =>
r
•
x
)
l
)
.
sum
source
theorem
Multiset
.
sum_smul_sum
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
{s :
Multiset
R
}
{t :
Multiset
M
}
:
s
.
sum
•
t
.
sum
=
(
map
(fun (
p
:
R
×
M
) =>
p
.1
•
p
.2
)
(
s
×ˢ
t
))
.
sum
source
theorem
Finset
.
sum_smul
{ι :
Type
u_1}
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
{f :
ι
→
R
}
{s :
Finset
ι
}
{x :
M
}
:
(∑
i
∈
s
,
f
i
)
•
x
=
∑
i
∈
s
,
f
i
•
x
source
theorem
Finset
.
sum_smul_sum
{α :
Type
u_3}
{β :
Type
u_4}
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
(s :
Finset
α
)
(t :
Finset
β
)
{f :
α
→
R
}
{g :
β
→
M
}
:
(∑
i
∈
s
,
f
i
)
•
∑
j
∈
t
,
g
j
=
∑
i
∈
s
,
∑
j
∈
t
,
f
i
•
g
j
source
theorem
Fintype
.
sum_smul_sum
{α :
Type
u_3}
{β :
Type
u_4}
{R :
Type
u_5}
{M :
Type
u_6}
[
Semiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
[
Fintype
α
]
[
Fintype
β
]
(f :
α
→
R
)
(g :
β
→
M
)
:
(∑
i
:
α
,
f
i
)
•
∑
j
:
β
,
g
j
=
∑
i
:
α
,
∑
j
:
β
,
f
i
•
g
j
source
theorem
Finset
.
cast_card
{α :
Type
u_3}
{R :
Type
u_5}
[
CommSemiring
R
]
(s :
Finset
α
)
:
↑
s
.
card
=
∑
x
∈
s
,
1
source
theorem
Fintype
.
sum_piFinset_apply
{ι :
Type
u_1}
{κ :
Type
u_2}
{α :
Type
u_3}
[
DecidableEq
ι
]
[
Fintype
ι
]
[
AddCommMonoid
α
]
(f :
κ
→
α
)
(s :
Finset
κ
)
(i :
ι
)
:
∑
g
∈
piFinset
fun (
x
:
ι
) =>
s
,
f
(
g
i
)
=
s
.
card
^
(
card
ι
-
1
)
•
∑
b
∈
s
,
f
b