Congruence relations respecting scalar multiplication #
A congruence relation that preserves additive action.
- iseqv : Equivalence ⇑self.toSetoid
A
VAddConis closed under additive action.
Instances For
A congruence relation that preserves scalar multiplication.
- iseqv : Equivalence ⇑self.toSetoid
A
SMulConis closed under scalar multiplication.
Instances For
A congruence relation that preserves addition and scalar multiplication.
The quotient by a ModuleCon inherits DistribSMul, DistribMulAction, and Module instances.
- iseqv : Equivalence ⇑self.toSetoid
Instances For
Equations
- SMulCon.instSMulQuotient M c = { smul := fun (s : S) => Quotient.map (fun (x : M) => s • x) ⋯ }
Equations
- VAddCon.instVAddQuotient M c = { vadd := fun (s : S) => Quotient.map (fun (x : M) => s +ᵥ x) ⋯ }
Equations
- SMulCon.instSMulZeroClassQuotient M c = { toSMul := SMulCon.instSMulQuotient M c, smul_zero := ⋯ }
Equations
- SMulCon.instSMulWithZeroQuotient M c = { toSMulZeroClass := SMulCon.instSMulZeroClassQuotient M c, zero_smul := ⋯ }
Equations
- SMulCon.instMulActionQuotient M c = { toSMul := SMulCon.instSMulQuotient M c, one_smul := ⋯, mul_smul := ⋯ }
Equations
- VAddCon.instAddActionQuotient M c = { toVAdd := VAddCon.instVAddQuotient M c, zero_vadd := ⋯, add_vadd := ⋯ }
The AddCon generated by a relation respecting scalar multiplication is a ModuleCon.
Equations
- SMulCon.addConGen' r hr = { toAddCon := addConGen r, smul := ⋯ }
Instances For
The AddCon generated by a SMulCon is a ModuleCon.
Equations
- c.addConGen = SMulCon.addConGen' ⇑c.toSetoid ⋯
Instances For
Equations
- ModuleCon.instSMulQuotient M c = inferInstanceAs (SMul S (SMulCon.Quotient M c.toSMulCon))
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
- ModuleCon.instDistribSMulQuotient M c = { toSMulZeroClass := ModuleCon.instSMulZeroClassQuotient M c, smul_add := ⋯ }
Equations
- ModuleCon.instDistribMulActionQuotient M c = { toMulAction := ModuleCon.instMulActionQuotient M c, smul_zero := ⋯, smul_add := ⋯ }
Equations
- ModuleCon.instModuleQuotient M c = { toDistribMulAction := ModuleCon.instDistribMulActionQuotient M c, add_smul := ⋯, zero_smul := ⋯ }
The kernel of a MulActionHom as a congruence relation.
Equations
- SMulCon.ker f = { toSetoid := Setoid.ker ⇑f, smul := ⋯ }
Instances For
The kernel of an AddActionHom as a congruence relation.
Equations
- VAddCon.ker f = { toSetoid := Setoid.ker ⇑f, vadd := ⋯ }
Instances For
The kernel of a DistribMulActionHom as a congruence relation.
Equations
- ModuleCon.ker f = { toSetoid := (SMulCon.ker f.toMulActionHom).toSetoid, add' := ⋯, smul := ⋯ }
Instances For
The first isomorphism theorem for semimodules in the case of a surjective homomorphism.
Equations
- One or more equations did not get rendered due to their size.