Documentation

Mathlib.Algebra.Module.Equiv.Opposite

Module operations on Mᵐᵒᵖ #

This file contains definitions that build on top of the group action definitions in Mathlib.Algebra.GroupWithZero.Action.Opposite.

theorem LinearMap.ext_ring_op {R : Type u_1} {S : Type u_2} {M : Type u_3} [Semiring R] [Semiring S] [AddCommMonoid M] [Module S M] {σ : Rᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M} (h : f 1 = g 1) :
f = g

The function op is a linear equivalence.

Equations
Instances For
    @[simp]
    theorem MulOpposite.coe_opLinearEquiv (R : Type u) {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
    @[simp]
    theorem MulOpposite.coe_opLinearEquiv_symm (R : Type u) {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
    (opLinearEquiv R).symm = unop
    @[simp]
    theorem MulOpposite.opLinearEquiv_symm_toAddEquiv (R : Type u) {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
    (opLinearEquiv R).symm.toAddEquiv = opAddEquiv.symm
    @[simp]