Unions of Submodule
s #
This file is a home for results about unions of submodules.
Main results: #
Submodule.iUnion_ssubset_of_forall_ne_top_of_card_lt
: a finite union of proper submodules is a proper subset, provided the coefficients are a sufficiently large field.
theorem
Module.Dual.exists_forall_mem_ne_zero_of_forall_exists
{ι : Type u_1}
{K : Type u_2}
{M : Type u_3}
[Field K]
[AddCommGroup M]
[Module K M]
[Finite ι]
[Infinite K]
(p : Submodule K M)
(f : ι → Dual K M)
(h : ∀ (i : ι), ∃ x ∈ p, (f i) x ≠ 0)
:
∃ x ∈ p, ∀ (i : ι), (f i) x ≠ 0
A convenience variation of Module.Dual.exists_forall_ne_zero_of_forall_exists
where we are
concerned only about behaviour on a fixed submodule.