Documentation

Mathlib.Algebra.Module.Submodule.Union

Unions of Submodules #

This file is a home for results about unions of submodules.

Main results: #

theorem Submodule.iUnion_ssubset_of_forall_ne_top_of_card_lt {ι : Type u_1} {K : Type u_2} {M : Type u_3} [Field K] [AddCommGroup M] [Module K M] (s : Finset ι) (p : ιSubmodule K M) (h₁ : ∀ (i : ι), p i ) (h₂ : s.card < ENat.card K) :
is, (p i) Set.univ
theorem Submodule.exists_forall_notMem_of_forall_ne_top {ι : Type u_1} {K : Type u_2} {M : Type u_3} [Field K] [AddCommGroup M] [Module K M] [Finite ι] [Infinite K] (p : ιSubmodule K M) (h : ∀ (i : ι), p i ) :
∃ (x : M), ∀ (i : ι), xp i
theorem Module.Dual.exists_forall_ne_zero_of_forall_exists {ι : Type u_1} {K : Type u_2} {M : Type u_3} [Field K] [AddCommGroup M] [Module K M] [Finite ι] [Infinite K] (f : ιDual K M) (h : ∀ (i : ι), ∃ (x : M), (f i) x 0) :
∃ (x : M), ∀ (i : ι), (f i) x 0
theorem Module.Dual.exists_forall_mem_ne_zero_of_forall_exists {ι : Type u_1} {K : Type u_2} {M : Type u_3} [Field K] [AddCommGroup M] [Module K M] [Finite ι] [Infinite K] (p : Submodule K M) (f : ιDual K M) (h : ∀ (i : ι), xp, (f i) x 0) :
xp, ∀ (i : ι), (f i) x 0

A convenience variation of Module.Dual.exists_forall_ne_zero_of_forall_exists where we are concerned only about behaviour on a fixed submodule.