Documentation

Mathlib.Algebra.Order.AbsoluteValue.Equivalence

Equivalence of real-valued absolute values #

Two absolute values v₁, v₂ : AbsoluteValue R ℝ are equivalent if there exists a positive real number c such that v₁ x ^ c = v₂ x for all x : R.

Two absolute values f, g on R with values in are equivalent if there exists a positive real constant c such that for all x : R, (f x)^c = g x.

Equations
  • f.IsEquiv g = ∃ (c : ), 0 < c (fun (x : R) => f x ^ c) = g
Instances For
    theorem AbsoluteValue.isEquiv_refl {R : Type u_1} [Semiring R] (f : AbsoluteValue R ) :
    f.IsEquiv f

    Equivalence of absolute values is reflexive.

    theorem AbsoluteValue.isEquiv_symm {R : Type u_1} [Semiring R] {f g : AbsoluteValue R } (hfg : f.IsEquiv g) :
    g.IsEquiv f

    Equivalence of absolute values is symmetric.

    theorem AbsoluteValue.isEquiv_trans {R : Type u_1} [Semiring R] {f g k : AbsoluteValue R } (hfg : f.IsEquiv g) (hgk : g.IsEquiv k) :
    f.IsEquiv k

    Equivalence of absolute values is transitive.

    @[simp]

    An absolute value is equivalent to the trivial iff it is trivial itself.