Lemmas about densely linearly ordered groups. #
theorem
le_of_forall_lt_one_mul_le
{α : Type u_1}
[Group α]
[LinearOrder α]
[MulLeftMono α]
[DenselyOrdered α]
{a b : α}
(h : ∀ (ε : α), ε < 1 → a * ε ≤ b)
:
theorem
le_of_forall_neg_add_le
{α : Type u_1}
[AddGroup α]
[LinearOrder α]
[AddLeftMono α]
[DenselyOrdered α]
{a b : α}
(h : ∀ (ε : α), ε < 0 → a + ε ≤ b)
:
theorem
le_of_forall_one_lt_div_le
{α : Type u_1}
[Group α]
[LinearOrder α]
[MulLeftMono α]
[DenselyOrdered α]
{a b : α}
(h : ∀ (ε : α), 1 < ε → a / ε ≤ b)
:
theorem
le_of_forall_pos_sub_le
{α : Type u_1}
[AddGroup α]
[LinearOrder α]
[AddLeftMono α]
[DenselyOrdered α]
{a b : α}
(h : ∀ (ε : α), 0 < ε → a - ε ≤ b)
:
theorem
le_iff_forall_lt_one_mul_le
{α : Type u_1}
[Group α]
[LinearOrder α]
[MulLeftMono α]
[DenselyOrdered α]
{a b : α}
:
theorem
le_iff_forall_neg_add_le
{α : Type u_1}
[AddGroup α]
[LinearOrder α]
[AddLeftMono α]
[DenselyOrdered α]
{a b : α}
:
theorem
le_mul_of_forall_lt
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[MulLeftMono α]
[DenselyOrdered α]
{a b c : α}
(h : ∀ (a' : α), a' > a → ∀ (b' : α), b' > b → c ≤ a' * b')
:
theorem
le_add_of_forall_lt
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[AddLeftMono α]
[DenselyOrdered α]
{a b c : α}
(h : ∀ (a' : α), a' > a → ∀ (b' : α), b' > b → c ≤ a' + b')
:
theorem
mul_le_of_forall_lt
{α : Type u_1}
[CommGroup α]
[LinearOrder α]
[MulLeftMono α]
[DenselyOrdered α]
{a b c : α}
(h : ∀ (a' : α), a' < a → ∀ (b' : α), b' < b → a' * b' ≤ c)
:
theorem
add_le_of_forall_lt
{α : Type u_1}
[AddCommGroup α]
[LinearOrder α]
[AddLeftMono α]
[DenselyOrdered α]
{a b c : α}
(h : ∀ (a' : α), a' < a → ∀ (b' : α), b' < b → a' + b' ≤ c)
:
theorem
exists_pow_lt_of_one_lt
{M : Type u_2}
[LinearOrder M]
[DenselyOrdered M]
{x : M}
[CommMonoid M]
[ExistsMulOfLE M]
[IsOrderedCancelMonoid M]
(hx : 1 < x)
(n : ℕ)
:
theorem
exists_nsmul_lt_of_pos
{M : Type u_2}
[LinearOrder M]
[DenselyOrdered M]
{x : M}
[AddCommMonoid M]
[ExistsAddOfLE M]
[IsOrderedCancelAddMonoid M]
(hx : 0 < x)
(n : ℕ)
:
theorem
exists_lt_pow_of_lt_one
{M : Type u_2}
[LinearOrder M]
[DenselyOrdered M]
{x : M}
[CommGroup M]
[IsOrderedCancelMonoid M]
(hx : x < 1)
(n : ℕ)
:
theorem
exists_lt_nsmul_of_neg
{M : Type u_2}
[LinearOrder M]
[DenselyOrdered M]
{x : M}
[AddCommGroup M]
[IsOrderedCancelAddMonoid M]
(hx : x < 0)
(n : ℕ)
: