Documentation

Mathlib.Algebra.Order.Group.DenselyOrdered

Lemmas about densely linearly ordered groups. #

theorem le_of_forall_lt_one_mul_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), ε < 1a * ε b) :
a b
theorem le_of_forall_neg_add_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), ε < 0a + ε b) :
a b
theorem le_of_forall_one_lt_div_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), 1 < εa / ε b) :
a b
theorem le_of_forall_pos_sub_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), 0 < εa - ε b) :
a b
theorem le_iff_forall_lt_one_mul_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} :
a b ∀ (ε : α), ε < 1a * ε b
theorem le_iff_forall_neg_add_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} :
a b ∀ (ε : α), ε < 0a + ε b
theorem le_mul_of_forall_lt {α : Type u_1} [CommGroup α] [LinearOrder α] [CovariantClass α α (fun (x1 x2 : α) => x1 * x2) fun (x1 x2 : α) => x1 x2] [DenselyOrdered α] {a b c : α} (h : ∀ (a' : α), a' > a∀ (b' : α), b' > bc a' * b') :
c a * b
theorem le_add_of_forall_lt {α : Type u_1} [AddCommGroup α] [LinearOrder α] [CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 x2] [DenselyOrdered α] {a b c : α} (h : ∀ (a' : α), a' > a∀ (b' : α), b' > bc a' + b') :
c a + b
theorem mul_le_of_forall_lt {α : Type u_1} [CommGroup α] [LinearOrder α] [CovariantClass α α (fun (x1 x2 : α) => x1 * x2) fun (x1 x2 : α) => x1 x2] [DenselyOrdered α] {a b c : α} (h : ∀ (a' : α), a' < a∀ (b' : α), b' < ba' * b' c) :
a * b c
theorem add_le_of_forall_lt {α : Type u_1} [AddCommGroup α] [LinearOrder α] [CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 x2] [DenselyOrdered α] {a b c : α} (h : ∀ (a' : α), a' < a∀ (b' : α), b' < ba' + b' c) :
a + b c