Documentation

Mathlib.Algebra.Order.Group.End

Relation isomorphisms form a group #

instance RelHom.instMonoid {α : Type u_1} {r : ααProp} :
Monoid (r →r r)
Equations
theorem RelHom.one_def {α : Type u_1} {r : ααProp} :
theorem RelHom.mul_def {α : Type u_1} {r : ααProp} (f g : r →r r) :
f * g = f.comp g
@[simp]
theorem RelHom.coe_one {α : Type u_1} {r : ααProp} :
1 = id
@[simp]
theorem RelHom.coe_mul {α : Type u_1} {r : ααProp} (f g : r →r r) :
⇑(f * g) = f g
theorem RelHom.one_apply {α : Type u_1} {r : ααProp} (a : α) :
1 a = a
theorem RelHom.mul_apply {α : Type u_1} {r : ααProp} (e₁ e₂ : r →r r) (x : α) :
(e₁ * e₂) x = e₁ (e₂ x)
instance RelEmbedding.instMonoid {α : Type u_1} {r : ααProp} :
Monoid (r ↪r r)
Equations
theorem RelEmbedding.one_def {α : Type u_1} {r : ααProp} :
theorem RelEmbedding.mul_def {α : Type u_1} {r : ααProp} (f g : r ↪r r) :
f * g = g.trans f
@[simp]
theorem RelEmbedding.coe_one {α : Type u_1} {r : ααProp} :
1 = id
@[simp]
theorem RelEmbedding.coe_mul {α : Type u_1} {r : ααProp} (f g : r ↪r r) :
⇑(f * g) = f g
theorem RelEmbedding.one_apply {α : Type u_1} {r : ααProp} (a : α) :
1 a = a
theorem RelEmbedding.mul_apply {α : Type u_1} {r : ααProp} (e₁ e₂ : r ↪r r) (x : α) :
(e₁ * e₂) x = e₁ (e₂ x)
instance RelIso.instGroup {α : Type u_1} {r : ααProp} :
Group (r ≃r r)
Equations
theorem RelIso.one_def {α : Type u_1} {r : ααProp} :
theorem RelIso.mul_def {α : Type u_1} {r : ααProp} (f g : r ≃r r) :
f * g = g.trans f
@[simp]
theorem RelIso.coe_one {α : Type u_1} {r : ααProp} :
1 = id
@[simp]
theorem RelIso.coe_mul {α : Type u_1} {r : ααProp} (e₁ e₂ : r ≃r r) :
⇑(e₁ * e₂) = e₁ e₂
theorem RelIso.one_apply {α : Type u_1} {r : ααProp} (x : α) :
1 x = x
theorem RelIso.mul_apply {α : Type u_1} {r : ααProp} (e₁ e₂ : r ≃r r) (x : α) :
(e₁ * e₂) x = e₁ (e₂ x)
@[simp]
theorem RelIso.inv_apply_self {α : Type u_1} {r : ααProp} (e : r ≃r r) (x : α) :
e⁻¹ (e x) = x
@[simp]
theorem RelIso.apply_inv_self {α : Type u_1} {r : ααProp} (e : r ≃r r) (x : α) :
e (e⁻¹ x) = x