Documentation

Mathlib.Algebra.Order.Group.Equiv

Add/Mul equivalence for order type synonyms #

def toLexMulEquiv (α : Type u_1) [Mul α] :
α ≃* Lex α

toLex as a MulEquiv.

Equations
Instances For
    def toLexAddEquiv (α : Type u_1) [Add α] :
    α ≃+ Lex α

    toLex as a AddEquiv.

    Equations
    Instances For
      def ofLexMulEquiv (α : Type u_1) [Mul α] :
      Lex α ≃* α

      ofLex as a MulEquiv.

      Equations
      Instances For
        def ofLexAddEquiv (α : Type u_1) [Add α] :
        Lex α ≃+ α

        ofLex as a AddEquiv.

        Equations
        Instances For
          @[simp]
          theorem coe_toLexMulEquiv (α : Type u_1) [Mul α] :
          (toLexMulEquiv α) = toLex
          @[simp]
          theorem coe_toLexAddEquiv (α : Type u_1) [Add α] :
          (toLexAddEquiv α) = toLex
          @[simp]
          theorem coe_ofLexMulEquiv (α : Type u_1) [Mul α] :
          (ofLexMulEquiv α) = ofLex
          @[simp]
          theorem coe_ofLexAddEquiv (α : Type u_1) [Add α] :
          (ofLexAddEquiv α) = ofLex
          @[simp]
          theorem symm_toLexMulEquiv (α : Type u_1) [Mul α] :
          @[simp]
          theorem symm_toLexAddEquiv (α : Type u_1) [Add α] :
          @[simp]
          theorem symm_ofLexMulEquiv (α : Type u_1) [Mul α] :
          @[simp]
          theorem symm_ofLexAddEquiv (α : Type u_1) [Add α] :
          @[simp]
          theorem toEquiv_toLexMulEquiv (α : Type u_1) [Mul α] :
          @[simp]
          theorem toEquiv_toLexAddEquiv (α : Type u_1) [Add α] :
          @[simp]
          theorem toEquiv_ofLexMulEquiv (α : Type u_1) [Mul α] :
          @[simp]
          theorem toEquiv_ofLexAddEquiv (α : Type u_1) [Add α] :