Documentation

Mathlib.Algebra.Order.Group.OrderIso

Inverse and multiplication as order isomorphisms in ordered groups #

def OrderIso.inv (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] :

x ↦ x⁻¹ as an order-reversing equivalence.

Equations
Instances For
    def OrderIso.neg (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] :

    x ↦ -x as an order-reversing equivalence.

    Equations
    Instances For
      @[simp]
      theorem OrderIso.neg_symm_apply (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a✝ : αᵒᵈ) :
      (RelIso.symm (neg α)) a✝ = -OrderDual.ofDual a✝
      @[simp]
      theorem OrderIso.inv_apply (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a✝ : α) :
      (inv α) a✝ = OrderDual.toDual a✝⁻¹
      @[simp]
      theorem OrderIso.inv_symm_apply (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a✝ : αᵒᵈ) :
      (RelIso.symm (inv α)) a✝ = (OrderDual.ofDual a✝)⁻¹
      @[simp]
      theorem OrderIso.neg_apply (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a✝ : α) :
      (neg α) a✝ = OrderDual.toDual (-a✝)
      theorem inv_le' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
      theorem neg_le {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
      -a b -b a
      theorem inv_le_of_inv_le' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
      a⁻¹ bb⁻¹ a

      Alias of the forward direction of inv_le'.

      theorem neg_le_of_neg_le {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
      -a b-b a
      theorem le_inv' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
      theorem le_neg {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
      a -b b -a
      def OrderIso.divLeft {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a : α) :

      x ↦ a / x as an order-reversing equivalence.

      Equations
      Instances For
        def OrderIso.subLeft {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a : α) :

        x ↦ a - x as an order-reversing equivalence.

        Equations
        Instances For
          @[simp]
          theorem OrderIso.divLeft_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a a✝ : α) :
          (divLeft a) a✝ = OrderDual.toDual (a / a✝)
          @[simp]
          theorem OrderIso.subLeft_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a a✝ : α) :
          (subLeft a) a✝ = OrderDual.toDual (a - a✝)
          @[simp]
          theorem OrderIso.subLeft_symm_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a : α) (a✝ : αᵒᵈ) :
          (RelIso.symm (subLeft a)) a✝ = -OrderDual.ofDual a✝ + a
          @[simp]
          theorem OrderIso.divLeft_symm_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a : α) (a✝ : αᵒᵈ) :
          (RelIso.symm (divLeft a)) a✝ = (OrderDual.ofDual a✝)⁻¹ * a
          theorem le_inv_of_le_inv {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
          a b⁻¹b a⁻¹

          Alias of the forward direction of le_inv'.

          theorem le_neg_of_le_neg {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
          a -bb -a
          def OrderIso.mulRight {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
          α ≃o α

          Equiv.mulRight as an OrderIso. See also OrderEmbedding.mulRight.

          Equations
          Instances For
            def OrderIso.addRight {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
            α ≃o α

            Equiv.addRight as an OrderIso. See also OrderEmbedding.addRight.

            Equations
            Instances For
              @[simp]
              theorem OrderIso.mulRight_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a x : α) :
              (mulRight a) x = x * a
              @[simp]
              theorem OrderIso.addRight_toEquiv {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
              (addRight a).toEquiv = Equiv.addRight a
              @[simp]
              theorem OrderIso.mulRight_toEquiv {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
              (mulRight a).toEquiv = Equiv.mulRight a
              @[simp]
              theorem OrderIso.addRight_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a x : α) :
              (addRight a) x = x + a
              @[simp]
              theorem OrderIso.mulRight_symm {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
              @[simp]
              theorem OrderIso.addRight_symm {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
              (addRight a).symm = addRight (-a)
              def OrderIso.divRight {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
              α ≃o α

              x ↦ x / a as an order isomorphism.

              Equations
              Instances For
                def OrderIso.subRight {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
                α ≃o α

                x ↦ x - a as an order isomorphism.

                Equations
                Instances For
                  @[simp]
                  theorem OrderIso.divRight_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a b : α) :
                  (divRight a) b = b / a
                  @[simp]
                  theorem OrderIso.subRight_symm_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a b : α) :
                  (RelIso.symm (subRight a)) b = b + a
                  @[simp]
                  theorem OrderIso.subRight_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a b : α) :
                  (subRight a) b = b - a
                  @[simp]
                  theorem OrderIso.divRight_symm_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a b : α) :
                  (RelIso.symm (divRight a)) b = b * a
                  def OrderIso.mulLeft {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
                  α ≃o α

                  Equiv.mulLeft as an OrderIso. See also OrderEmbedding.mulLeft.

                  Equations
                  Instances For
                    def OrderIso.addLeft {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
                    α ≃o α

                    Equiv.addLeft as an OrderIso. See also OrderEmbedding.addLeft.

                    Equations
                    Instances For
                      @[simp]
                      theorem OrderIso.mulLeft_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] (a x : α) :
                      (mulLeft a) x = a * x
                      @[simp]
                      theorem OrderIso.mulLeft_toEquiv {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
                      (mulLeft a).toEquiv = Equiv.mulLeft a
                      @[simp]
                      theorem OrderIso.addLeft_toEquiv {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
                      (addLeft a).toEquiv = Equiv.addLeft a
                      @[simp]
                      theorem OrderIso.addLeft_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a x : α) :
                      (addLeft a) x = a + x
                      @[simp]
                      theorem OrderIso.mulLeft_symm {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
                      @[simp]
                      theorem OrderIso.addLeft_symm {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
                      (addLeft a).symm = addLeft (-a)