Actions by and on order synonyms #
This PR transfers group action with zero instances from a type α
to αᵒᵈ
and Lex α
. Note that
the SMul
instances are already defined in Mathlib.Algebra.Order.Group.Synonym
.
See also #
Mathlib.Algebra.Order.Group.Action.Synonym
Mathlib.Algebra.Order.Module.Synonym
instance
OrderDual.instSMulWithZero
{G₀ : Type u_1}
{M₀ : Type u_2}
[Zero G₀]
[Zero M₀]
[SMulWithZero G₀ M₀]
:
SMulWithZero G₀ᵒᵈ M₀
Equations
- OrderDual.instSMulWithZero = inst✝
instance
OrderDual.instSMulWithZero'
{G₀ : Type u_1}
{M₀ : Type u_2}
[Zero G₀]
[Zero M₀]
[SMulWithZero G₀ M₀]
:
SMulWithZero G₀ M₀ᵒᵈ
Equations
- OrderDual.instSMulWithZero' = inst✝
instance
OrderDual.instDistribSMul
{G₀ : Type u_1}
{M₀ : Type u_2}
[AddZeroClass M₀]
[DistribSMul G₀ M₀]
:
DistribSMul G₀ᵒᵈ M₀
Equations
- OrderDual.instDistribSMul = inst✝
instance
OrderDual.instDistribSMul'
{G₀ : Type u_1}
{M₀ : Type u_2}
[AddZeroClass M₀]
[DistribSMul G₀ M₀]
:
DistribSMul G₀ M₀ᵒᵈ
Equations
- OrderDual.instDistribSMul' = inst✝
instance
OrderDual.instDistribMulAction
{G₀ : Type u_1}
{M₀ : Type u_2}
[Monoid G₀]
[AddMonoid M₀]
[DistribMulAction G₀ M₀]
:
DistribMulAction G₀ᵒᵈ M₀
Equations
- OrderDual.instDistribMulAction = inst✝
instance
OrderDual.instDistribMulAction'
{G₀ : Type u_1}
{M₀ : Type u_2}
[Monoid G₀]
[AddMonoid M₀]
[DistribMulAction G₀ M₀]
:
DistribMulAction G₀ M₀ᵒᵈ
Equations
- OrderDual.instDistribMulAction' = inst✝
instance
OrderDual.instMulActionWithZero
{G₀ : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero G₀]
[AddMonoid M₀]
[MulActionWithZero G₀ M₀]
:
MulActionWithZero G₀ᵒᵈ M₀
Equations
- OrderDual.instMulActionWithZero = inst✝
instance
OrderDual.instMulActionWithZero'
{G₀ : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero G₀]
[AddMonoid M₀]
[MulActionWithZero G₀ M₀]
:
MulActionWithZero G₀ M₀ᵒᵈ
Equations
- OrderDual.instMulActionWithZero' = inst✝
instance
Lex.instSMulWithZero
{G₀ : Type u_1}
{M₀ : Type u_2}
[Zero G₀]
[Zero M₀]
[SMulWithZero G₀ M₀]
:
SMulWithZero (Lex G₀) M₀
Equations
- Lex.instSMulWithZero = inst✝
instance
Lex.instSMulWithZero'
{G₀ : Type u_1}
{M₀ : Type u_2}
[Zero G₀]
[Zero M₀]
[SMulWithZero G₀ M₀]
:
SMulWithZero G₀ (Lex M₀)
Equations
- Lex.instSMulWithZero' = inst✝
instance
Lex.instDistribSMul
{G₀ : Type u_1}
{M₀ : Type u_2}
[AddZeroClass M₀]
[DistribSMul G₀ M₀]
:
DistribSMul (Lex G₀) M₀
Equations
- Lex.instDistribSMul = inst✝
instance
Lex.instDistribSMul'
{G₀ : Type u_1}
{M₀ : Type u_2}
[AddZeroClass M₀]
[DistribSMul G₀ M₀]
:
DistribSMul G₀ (Lex M₀)
Equations
- Lex.instDistribSMul' = inst✝
instance
Lex.instDistribMulAction
{G₀ : Type u_1}
{M₀ : Type u_2}
[Monoid G₀]
[AddMonoid M₀]
[DistribMulAction G₀ M₀]
:
DistribMulAction (Lex G₀) M₀
Equations
- Lex.instDistribMulAction = inst✝
instance
Lex.instDistribMulAction'
{G₀ : Type u_1}
{M₀ : Type u_2}
[Monoid G₀]
[AddMonoid M₀]
[DistribMulAction G₀ M₀]
:
DistribMulAction G₀ (Lex M₀)
Equations
- Lex.instDistribMulAction' = inst✝
instance
Lex.instMulActionWithZero
{G₀ : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero G₀]
[AddMonoid M₀]
[MulActionWithZero G₀ M₀]
:
MulActionWithZero (Lex G₀) M₀
Equations
- Lex.instMulActionWithZero = inst✝
instance
Lex.instMulActionWithZero'
{G₀ : Type u_1}
{M₀ : Type u_2}
[MonoidWithZero G₀]
[AddMonoid M₀]
[MulActionWithZero G₀ M₀]
:
MulActionWithZero G₀ (Lex M₀)
Equations
- Lex.instMulActionWithZero' = inst✝