Algebraic properties of finset intervals #
This file provides results about the interaction of algebra with Finset.Ixx
.
@[simp]
theorem
Finset.map_add_left_Icc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addLeftEmbedding c) (Finset.Icc a b) = Finset.Icc (c + a) (c + b)
@[simp]
theorem
Finset.map_add_right_Icc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addRightEmbedding c) (Finset.Icc a b) = Finset.Icc (a + c) (b + c)
@[simp]
theorem
Finset.map_add_left_Ico
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addLeftEmbedding c) (Finset.Ico a b) = Finset.Ico (c + a) (c + b)
@[simp]
theorem
Finset.map_add_right_Ico
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addRightEmbedding c) (Finset.Ico a b) = Finset.Ico (a + c) (b + c)
@[simp]
theorem
Finset.map_add_left_Ioc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addLeftEmbedding c) (Finset.Ioc a b) = Finset.Ioc (c + a) (c + b)
@[simp]
theorem
Finset.map_add_right_Ioc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addRightEmbedding c) (Finset.Ioc a b) = Finset.Ioc (a + c) (b + c)
@[simp]
theorem
Finset.map_add_left_Ioo
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addLeftEmbedding c) (Finset.Ioo a b) = Finset.Ioo (c + a) (c + b)
@[simp]
theorem
Finset.map_add_right_Ioo
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(a b c : α)
:
Finset.map (addRightEmbedding c) (Finset.Ioo a b) = Finset.Ioo (a + c) (b + c)
@[simp]
theorem
Finset.image_add_left_Icc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => c + x) (Finset.Icc a b) = Finset.Icc (c + a) (c + b)
@[simp]
theorem
Finset.image_add_left_Ico
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => c + x) (Finset.Ico a b) = Finset.Ico (c + a) (c + b)
@[simp]
theorem
Finset.image_add_left_Ioc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => c + x) (Finset.Ioc a b) = Finset.Ioc (c + a) (c + b)
@[simp]
theorem
Finset.image_add_left_Ioo
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => c + x) (Finset.Ioo a b) = Finset.Ioo (c + a) (c + b)
@[simp]
theorem
Finset.image_add_right_Icc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => x + c) (Finset.Icc a b) = Finset.Icc (a + c) (b + c)
@[simp]
theorem
Finset.image_add_right_Ico
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => x + c) (Finset.Ico a b) = Finset.Ico (a + c) (b + c)
@[simp]
theorem
Finset.image_add_right_Ioc
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => x + c) (Finset.Ioc a b) = Finset.Ioc (a + c) (b + c)
@[simp]
theorem
Finset.image_add_right_Ioo
{α : Type u_2}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[DecidableEq α]
(a b c : α)
:
Finset.image (fun (x : α) => x + c) (Finset.Ioo a b) = Finset.Ioo (a + c) (b + c)