Further lemmas about monotonicity of scalar multiplication #
theorem
inf_eq_half_smul_add_sub_abs_sub
(R : Type u_2)
{M : Type u_3}
[Semiring R]
[Invertible 2]
[Lattice M]
[AddCommGroup M]
[Module R M]
[IsOrderedAddMonoid M]
(x y : M)
:
theorem
sup_eq_half_smul_add_add_abs_sub
(R : Type u_2)
{M : Type u_3}
[Semiring R]
[Invertible 2]
[Lattice M]
[AddCommGroup M]
[Module R M]
[IsOrderedAddMonoid M]
(x y : M)
:
@[simp]
theorem
abs_smul
{R : Type u_2}
{M : Type u_3}
[Ring R]
[LinearOrder R]
[IsOrderedRing R]
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
[Module R M]
[PosSMulMono R M]
(a : R)
(b : M)
:
theorem
inf_eq_half_smul_add_sub_abs_sub'
(𝕜 : Type u_1)
{M : Type u_3}
[DivisionSemiring 𝕜]
[NeZero 2]
[Lattice M]
[AddCommGroup M]
[Module 𝕜 M]
[IsOrderedAddMonoid M]
(x y : M)
:
theorem
sup_eq_half_smul_add_add_abs_sub'
(𝕜 : Type u_1)
{M : Type u_3}
[DivisionSemiring 𝕜]
[NeZero 2]
[Lattice M]
[AddCommGroup M]
[Module 𝕜 M]
[IsOrderedAddMonoid M]
(x y : M)
: