Documentation

Mathlib.Algebra.Order.Module.Basic

Further lemmas about monotonicity of scalar multiplication #

theorem inf_eq_half_smul_add_sub_abs_sub (R : Type u_2) {M : Type u_3} [Semiring R] [Invertible 2] [Lattice M] [AddCommGroup M] [Module R M] [IsOrderedAddMonoid M] (x y : M) :
xy = 2 (x + y - |y - x|)
theorem sup_eq_half_smul_add_add_abs_sub (R : Type u_2) {M : Type u_3} [Semiring R] [Invertible 2] [Lattice M] [AddCommGroup M] [Module R M] [IsOrderedAddMonoid M] (x y : M) :
xy = 2 (x + y + |y - x|)
@[simp]
theorem abs_smul {R : Type u_2} {M : Type u_3} [Ring R] [LinearOrder R] [IsOrderedRing R] [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] [Module R M] [PosSMulMono R M] (a : R) (b : M) :
|a b| = |a| |b|
theorem inf_eq_half_smul_add_sub_abs_sub' (𝕜 : Type u_1) {M : Type u_3} [DivisionSemiring 𝕜] [NeZero 2] [Lattice M] [AddCommGroup M] [Module 𝕜 M] [IsOrderedAddMonoid M] (x y : M) :
xy = 2⁻¹ (x + y - |y - x|)
theorem sup_eq_half_smul_add_add_abs_sub' (𝕜 : Type u_1) {M : Type u_3} [DivisionSemiring 𝕜] [NeZero 2] [Lattice M] [AddCommGroup M] [Module 𝕜 M] [IsOrderedAddMonoid M] (x y : M) :
xy = 2⁻¹ (x + y + |y - x|)