Documentation
Mathlib
.
Algebra
.
Order
.
Monoid
.
Unbundled
.
Units
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Units.Basic
Mathlib.Algebra.Order.Monoid.Unbundled.Basic
Imported by
Units
.
mulLECancellable_val
Units
.
mul_le_mul_left
IsUnit
.
mulLECancellable
IsUnit
.
mul_le_mul_left
Units
.
mul_le_mul_right
IsUnit
.
mul_le_mul_right
Lemmas for units in an ordered monoid
#
source
theorem
Units
.
mulLECancellable_val
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulLeftMono
M
]
(
a
:
M
ˣ
)
:
MulLECancellable
↑
a
source
theorem
Units
.
mul_le_mul_left
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulLeftMono
M
]
(
a
:
M
ˣ
)
{
b
c
:
M
}
:
↑
a
*
b
≤
↑
a
*
c
↔
b
≤
c
source
theorem
IsUnit
.
mulLECancellable
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulLeftMono
M
]
{
a
:
M
}
(
ha
:
IsUnit
a
)
:
MulLECancellable
a
source
theorem
IsUnit
.
mul_le_mul_left
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulLeftMono
M
]
{
a
b
c
:
M
}
(
ha
:
IsUnit
a
)
:
a
*
b
≤
a
*
c
↔
b
≤
c
source
theorem
Units
.
mul_le_mul_right
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulRightMono
M
]
(
a
:
M
ˣ
)
{
b
c
:
M
}
:
b
*
↑
a
≤
c
*
↑
a
↔
b
≤
c
source
theorem
IsUnit
.
mul_le_mul_right
{
M
:
Type
u_1}
[
Monoid
M
]
[
LE
M
]
[
MulRightMono
M
]
{
a
b
c
:
M
}
(
ha
:
IsUnit
a
)
:
b
*
a
≤
c
*
a
↔
b
≤
c