Documentation

Mathlib.Algebra.Order.Monoid.Unbundled.Units

Lemmas for units in an ordered monoid #

theorem Units.mulLECancellable_val {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
theorem Units.inv_mul_le_iff {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
u⁻¹ * a b a u * b
theorem Units.le_inv_mul_iff {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
a u⁻¹ * b u * a b
@[simp]
theorem Units.one_le_inv {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
1 u⁻¹ u 1
@[simp]
theorem Units.inv_le_one {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
u⁻¹ 1 1 u
theorem Units.one_le_inv_mul {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
1 u⁻¹ * a u a
theorem Units.inv_mul_le_one {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
u⁻¹ * a 1 a u
theorem Units.le_mul_of_inv_mul_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
u⁻¹ * a ba u * b

Alias of the forward direction of Units.inv_mul_le_iff.

theorem Units.inv_mul_le_of_le_mul {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
a u * bu⁻¹ * a b

Alias of the reverse direction of Units.inv_mul_le_iff.

theorem Units.mul_le_of_le_inv_mul {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
a u⁻¹ * bu * a b

Alias of the forward direction of Units.le_inv_mul_iff.

theorem Units.le_inv_mul_of_mul_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a b : M} :
u * a ba u⁻¹ * b

Alias of the reverse direction of Units.le_inv_mul_iff.

theorem Units.one_le_inv_of_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
u 11 u⁻¹

Alias of the reverse direction of Units.one_le_inv.

theorem Units.le_of_one_le_inv {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
1 u⁻¹u 1

Alias of the forward direction of Units.one_le_inv.

theorem Units.inv_le_one_of_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
1 uu⁻¹ 1

Alias of the reverse direction of Units.inv_le_one.

theorem Units.le_of_inv_le_one {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) :
u⁻¹ 11 u

Alias of the forward direction of Units.inv_le_one.

theorem Units.le_of_one_le_inv_mul {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
1 u⁻¹ * au a

Alias of the forward direction of Units.one_le_inv_mul.

theorem Units.one_le_inv_mul_of_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
u a1 u⁻¹ * a

Alias of the reverse direction of Units.one_le_inv_mul.

theorem Units.le_of_inv_mul_le_one {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
u⁻¹ * a 1a u

Alias of the forward direction of Units.inv_mul_le_one.

theorem Units.inv_mul_le_one_of_le {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] (u : Mˣ) {a : M} :
a uu⁻¹ * a 1

Alias of the reverse direction of Units.inv_mul_le_one.

theorem Units.mul_inv_le_iff {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a * u⁻¹ b a b * u
theorem Units.le_mul_inv_iff {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a b * u⁻¹ a * u b
theorem Units.one_le_mul_inv {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
1 a * u⁻¹ u a
theorem Units.mul_inv_le_one {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
a * u⁻¹ 1 a u
theorem Units.mul_inv_le_of_le_mul {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a b * ua * u⁻¹ b

Alias of the reverse direction of Units.mul_inv_le_iff.

theorem Units.le_mul_of_mul_inv_le {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a * u⁻¹ ba b * u

Alias of the forward direction of Units.mul_inv_le_iff.

theorem Units.mul_le_of_le_mul_inv {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a b * u⁻¹a * u b

Alias of the forward direction of Units.le_mul_inv_iff.

theorem Units.le_mul_inv_of_mul_le {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b : M} (u : Mˣ) :
a * u ba b * u⁻¹

Alias of the reverse direction of Units.le_mul_inv_iff.

theorem Units.le_of_one_le_mul_inv {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
1 a * u⁻¹u a

Alias of the forward direction of Units.one_le_mul_inv.

theorem Units.one_le_mul_inv_of_le {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
u a1 a * u⁻¹

Alias of the reverse direction of Units.one_le_mul_inv.

theorem Units.le_of_mul_inv_le_one {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
a * u⁻¹ 1a u

Alias of the forward direction of Units.mul_inv_le_one.

theorem Units.mul_inv_le_one_of_le {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a : M} (u : Mˣ) :
a ua * u⁻¹ 1

Alias of the reverse direction of Units.mul_inv_le_one.

theorem IsUnit.mulLECancellable {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] {a : M} (ha : IsUnit a) :
theorem IsUnit.mul_le_mul_left {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] {a b c : M} (ha : IsUnit a) :
a * b a * c b c
theorem IsUnit.le_of_mul_le_mul_left {M : Type u_1} [Monoid M] [LE M] [MulLeftMono M] {a b c : M} (ha : IsUnit a) :
a * b a * cb c

Alias of the forward direction of IsUnit.mul_le_mul_left.

theorem IsUnit.mul_le_mul_right {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b c : M} (hc : IsUnit c) :
a * c b * c a b
theorem IsUnit.le_of_mul_le_mul_right {M : Type u_1} [Monoid M] [LE M] [MulRightMono M] {a b c : M} (hc : IsUnit c) :
a * c b * ca b

Alias of the forward direction of IsUnit.mul_le_mul_right.