Documentation

Mathlib.Algebra.Order.Nonneg.Field

Semifield structure on the type of nonnegative elements #

This file defines instances and prove some properties about the nonnegative elements {x : α // 0 ≤ x} of an arbitrary type α.

This is used to derive algebraic structures on ℝ≥0 and ℚ≥0 automatically.

Main declarations #

theorem NNRat.cast_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) :
0 q
theorem nnqsmul_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {a : α} (q : ℚ≥0) (ha : 0 a) :
0 q a

In an ordered field, the units of the nonnegative elements are the positive elements.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Nonneg.unitsEquivPos_apply_coe (R : Type u_2) [DivisionSemiring R] [PartialOrder R] [IsStrictOrderedRing R] [PosMulReflectLT R] (r : { r : R // 0 r }ˣ) :
    ((unitsEquivPos R) r) = r
    instance Nonneg.inv {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    Inv { x : α // 0 x }
    Equations
    @[simp]
    theorem Nonneg.coe_inv {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a : { x : α // 0 x }) :
    a⁻¹ = (↑a)⁻¹
    @[simp]
    theorem Nonneg.inv_mk {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x : α} (hx : 0 x) :
    instance Nonneg.div {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    Div { x : α // 0 x }
    Equations
    @[simp]
    theorem Nonneg.coe_div {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a b : { x : α // 0 x }) :
    ↑(a / b) = a / b
    @[simp]
    theorem Nonneg.mk_div_mk {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x y : α} (hx : 0 x) (hy : 0 y) :
    x, hx / y, hy = x / y,
    instance Nonneg.zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    Pow { x : α // 0 x }
    Equations
    @[simp]
    theorem Nonneg.coe_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a : { x : α // 0 x }) (n : ) :
    ↑(a ^ n) = a ^ n
    @[simp]
    theorem Nonneg.mk_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x : α} (hx : 0 x) (n : ) :
    x, hx ^ n = x ^ n,
    instance Nonneg.instNNRatCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    NNRatCast { x : α // 0 x }
    Equations
    instance Nonneg.instNNRatSMul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    SMul ℚ≥0 { x : α // 0 x }
    Equations
    @[simp]
    theorem Nonneg.coe_nnratCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) :
    q = q
    @[simp]
    theorem Nonneg.mk_nnratCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) :
    q, = q
    @[simp]
    theorem Nonneg.coe_nnqsmul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) (a : { x : α // 0 x }) :
    ↑(q a) = q a
    @[simp]
    theorem Nonneg.mk_nnqsmul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) (a : α) (ha : 0 a) :
    q a, = q a
    instance Nonneg.semifield {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
    Semifield { x : α // 0 x }
    Equations
    • One or more equations did not get rendered due to their size.