Pi instances for ordered groups and monoids #
This file defines instances for ordered group, monoid, and related structures on Pi types.
instance
Pi.orderedCommMonoid
{ι : Type u_6}
{Z : ι → Type u_7}
[(i : ι) → OrderedCommMonoid (Z i)]
:
OrderedCommMonoid ((i : ι) → Z i)
The product of a family of ordered commutative monoids is an ordered commutative monoid.
Equations
instance
Pi.orderedAddCommMonoid
{ι : Type u_6}
{Z : ι → Type u_7}
[(i : ι) → OrderedAddCommMonoid (Z i)]
:
OrderedAddCommMonoid ((i : ι) → Z i)
The product of a family of ordered additive commutative monoids is an ordered additive commutative monoid.
Equations
instance
Pi.existsMulOfLe
{ι : Type u_6}
{α : ι → Type u_7}
[(i : ι) → LE (α i)]
[(i : ι) → Mul (α i)]
[∀ (i : ι), ExistsMulOfLE (α i)]
:
ExistsMulOfLE ((i : ι) → α i)
instance
Pi.existsAddOfLe
{ι : Type u_6}
{α : ι → Type u_7}
[(i : ι) → LE (α i)]
[(i : ι) → Add (α i)]
[∀ (i : ι), ExistsAddOfLE (α i)]
:
ExistsAddOfLE ((i : ι) → α i)
instance
Pi.instCanonicallyOrderedMulForall
{ι : Type u_6}
{Z : ι → Type u_7}
[(i : ι) → Monoid (Z i)]
[(i : ι) → PartialOrder (Z i)]
[∀ (i : ι), CanonicallyOrderedMul (Z i)]
:
CanonicallyOrderedMul ((i : ι) → Z i)
The product of a family of canonically ordered monoids is a canonically ordered monoid.
instance
Pi.instCanonicallyOrderedAddForall
{ι : Type u_6}
{Z : ι → Type u_7}
[(i : ι) → AddMonoid (Z i)]
[(i : ι) → PartialOrder (Z i)]
[∀ (i : ι), CanonicallyOrderedAdd (Z i)]
:
CanonicallyOrderedAdd ((i : ι) → Z i)
The product of a family of canonically ordered additive monoids is a canonically ordered additive monoid.
instance
Pi.orderedCancelCommMonoid
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedCancelCommMonoid (f i)]
:
OrderedCancelCommMonoid ((i : I) → f i)
instance
Pi.orderedAddCancelCommMonoid
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedCancelAddCommMonoid (f i)]
:
OrderedCancelAddCommMonoid ((i : I) → f i)
instance
Pi.orderedCommGroup
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedCommGroup (f i)]
:
OrderedCommGroup ((i : I) → f i)
Equations
instance
Pi.orderedAddCommGroup
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedAddCommGroup (f i)]
:
OrderedAddCommGroup ((i : I) → f i)
Equations
instance
Pi.orderedSemiring
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedSemiring (f i)]
:
OrderedSemiring ((i : I) → f i)
Equations
- Pi.orderedSemiring = OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
instance
Pi.orderedCommSemiring
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedCommSemiring (f i)]
:
OrderedCommSemiring ((i : I) → f i)
Equations
instance
Pi.orderedRing
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedRing (f i)]
:
OrderedRing ((i : I) → f i)
Equations
- Pi.orderedRing = OrderedRing.mk ⋯ ⋯ ⋯
instance
Pi.orderedCommRing
{I : Type u_1}
{f : I → Type u_5}
[(i : I) → OrderedCommRing (f i)]
:
OrderedCommRing ((i : I) → f i)
Equations
theorem
Pi.GCongr.mulSingle_mono
{ι : Type u_6}
{α : ι → Type u_7}
[DecidableEq ι]
[(i : ι) → One (α i)]
[(i : ι) → Preorder (α i)]
{i : ι}
{a b : α i}
:
Alias of the reverse direction of Pi.mulSingle_le_mulSingle
.