Instances on PUnit #
This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring.
theorem
PUnit.addCommGroup.proof_9 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) (Int.negSucc n) a = (fun x x => PUnit.unit) (Int.negSucc n) a
theorem
PUnit.addCommGroup.proof_7 :
∀ (a : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) 0 a = (fun x x => PUnit.unit) 0 a
theorem
PUnit.addCommGroup.proof_4 :
∀ (x : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) 0 x = (fun x x => PUnit.unit) 0 x
theorem
PUnit.addCommGroup.proof_8 :
∀ (n : ℕ) (a : PUnit.{u_1 + 1} ),
(fun x x => PUnit.unit) (Int.ofNat (Nat.succ n)) a = (fun x x => PUnit.unit) (Int.ofNat (Nat.succ n)) a
theorem
PUnit.addCommGroup.proof_5 :
∀ (n : ℕ) (x : PUnit.{u_1 + 1} ), (fun x x => PUnit.unit) (n + 1) x = (fun x x => PUnit.unit) (n + 1) x
@[simp]
@[simp]